Where are we?

Last time . . .

- Using JPD tables for probabilistic inference
- Concepts of absolute and conditional independence
- Bayes’ rule

Today . . .

- Probabilistic Reasoning with Bayesian Networks
Representing knowledge in an uncertain domain

- Full joint probability distributions can become intractably large very quickly
- Conditional independence helps to reduce the number of probabilities required to specify the JPD
- Now we will introduce **Bayesian networks (BNs)** to systematically describe dependencies between random variables
- Roughly speaking, BNs are graphs that connect nodes representing variables with each other whenever they depend on each other
Bayesian networks

- A BN is a directed acyclic graph (DAG) with nodes annotated with probability information.
- The nodes represent random variables (discrete/continuous).
- Links connect nodes. If there is an arrow from \(X \) to \(Y \), we call \(X \) a **parent** of \(Y \).
- Each node \(X_i \) has a conditional probability distribution (CPD) attached to it.
- The CPD describes how \(X_i \) depends on its parents, i.e. its entries describe \(P(X_i|\text{Parents}(X_i)) \).
Bayesian networks

- Topology of graphs describes conditional independence relationships
- Intuitively, links describe **direct effects** of variables on each other in the domain
- Assumption: anything that is not directly connected does not directly depend on each other
- In previous dentist/weather example:
Example

- New burglar alarm has been fitted, fairly reliable but sometimes reacts to earthquakes
- Neighbours John and Mary promise to call when they hear alarm
- John sometimes mistakes phone for alarm, and Mary listens to loud music and sometimes doesn’t hear alarm
Example – things to note

- No perception of earthquake by John or Mary
- No explicit modelling of phone ring confusing John, or of Mary’s loud music
 (summarised in uncertainty regarding their reaction)
- Actually this uncertainty summarises any kind of failure
 - almost impossible to enumerate all possible causes,
 - and we don’t have estimates for their probabilities anyway
- Each row in CPTs contains a **conditioning case** (configuration of parent values)
- For k parents, 2^k possible cases
- We often omit $P(\neg x_i | Parents(X_i))$ from CPT for node X_i
 (computes as $1 - P(x_i | Parents(X_i))$)
The semantics of Bayesian Networks

- Two views:
 - BN as representation of JPD (useful for constructing BNs)
 - BN as collection of conditional independence statements (useful for designing inference procedures)
- Every entry $P(X_1 = x_1 \land \ldots \land X_n = x_n)$ in the JPD can be calculated from a BN (abbreviate by $P(x_1, \ldots, x_n)$)
- $P(x_1, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|parents(X_i))$
- Example:
 \[
P(j \land m \land a \land \neg b \land \neg e) \\
 = P(j|a)P(m|a)P(a|\neg b \land \neg e)P(\neg b)P(\neg e) \\
 = 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 = 0.00062
 \]
- As before, this can be used to answer any query
A method for constructing BNs

- Recall product rule for n variables:
 \[P(x_1, \ldots, x_n) = P(x_n|x_{n-1}, \ldots, x_1)P(x_{n-1}, \ldots, x_1) \]

- Repeated application of this yields the so-called **chain rule**:
 \[P(x_1, \ldots, x_n) = P(x_n|x_{n-1}, \ldots, x_1)P(x_{n-1}|x_{n-2}, \ldots, x_1) \cdots P(x_2|x_1)P(x_1) \]
 \[= \prod_{i=1}^{n} P(x_i|x_{i-1}, \ldots, x_1) \]

- With this we obtain $P(X_i|X_{i-1}, \ldots, X_1) = P(X_i|\text{Parents}(X_i))$ as long as $\text{Parents}(X_i) \subseteq \{X_{i-1}, \ldots, X_1\}$ (this can be ensured by labelling nodes appropriately)

- For example, it is reasonable to assume that
 \[P(\text{MaryCalls}|\text{JohnCalls}, \text{Alarm}, \text{Earthquake}, \text{Burglary}) = P(\text{MaryCalls}|\text{Alarm}) \]
Compactness and node ordering

- BNs examples of **locally structured** (sparse) systems: subcomponents only interact with small number of other components
- E.g. if 30 nodes and every node depends on 5 nodes, BN will have $30 \times 2^5 = 960$ probabilities stored in the CPDs, while JPD would have $2^{30} \approx 1000^3$ entries
- But remember that this is based on designer’s independence assumptions!
- Also not trivial to determine good BN structure:

 Add “root causes” first, then variables they influence, and so on, until we reach “leaves” which have no influence on other variables
Conditional independence relations in BNs

- Have provided “numerical” semantics, but can also look at (equivalent) “topological” semantics, namely:
 1. A node is conditionally independent of its **non-descendants**, given its parents
 2. A node is conditionally independent of all other nodes, given its parents, children and children’s parents, i.e. its **Markov blanket**
Efficient representation of conditional distributions

- Even the 2^k (k parents) conditioning cases that have to be provided require a great deal of experience and knowledge of the domain.
- Arbitrary relationships are unlikely, often describable by canonical distributions that fit some standard pattern.
- By specifying pattern by a few parameters we can save a lot of space!
- Simplest case: deterministic node that can be directly inferred from values of parents.
- For example, logical or mathematical functions.
Noisy-OR relationships

- Any cause can make effect true, but won’t necessarily (effect inhibited; \(P(\text{effect}|\text{cause}) < 1 \))
- Assumes all causes are listed (leak node can be used to cater for “miscellaneous” unlisted causes)
- Also assumes inhibitions are mutually conditionally independent
 - Whatever inhibits \(C_1 \) from making \(E \) true is independent of what inhibits \(C_2 \) from making \(E \) true.
- So \(E \) is false only if each of its true parents are inhibited and we can compute this likelihood from product of probabilities for each individual cause inhibiting \(E \).
- How does this help?
Example of Noisy-OR

- Fever is caused by Cold, Flu or Malaria and that’s all (!!)
- Inhibitions of Cold, Flu and Malaira are mutually conditionally independent
- Likelihood that Cold is inhibited from causing Fever is
\[P(\neg \text{fever} | \text{cold}, \neg \text{flu}, \neg \text{malaria}) \]
(similarly for other causes)
- Individual inhibition probabilities:
\[
P(\neg \text{fever} | \text{cold}, \neg \text{flu}, \neg \text{malaria}) = 0.6
\]
\[
P(\neg \text{fever} | \neg \text{cold}, \text{flu}, \neg \text{malaria}) = 0.2
\]
\[
P(\neg \text{fever} | \neg \text{cold}, \neg \text{flu}, \text{malaria}) = 0.1
\]

- Inhibitions mutually independent, so:
\[
P(\neg \text{fever} | \text{cold}, \text{flu}, \neg \text{malaria}) = \frac{P(\neg \text{fever} | \neg \text{cold}, \text{flu}, \neg \text{malaria})P(\neg \text{fever} | \text{cold}, \neg \text{flu}, \neg \text{malaria})}{P(\neg \text{fever} | \text{cold}, \neg \text{flu}, \text{malaria})} \]
Noisy-OR relationships

- We can construct entire CPT from this information

<table>
<thead>
<tr>
<th>Cold</th>
<th>Flue</th>
<th>Malaria</th>
<th>$P(\text{Fever})$</th>
<th>$P(\neg \text{Fever})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.98</td>
<td>0.02 $=0.2 \times 0.1$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.94</td>
<td>0.06 $=0.6 \times 0.1$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.88</td>
<td>0.12 $=0.6 \times 0.2$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.988</td>
<td>0.012 $=0.6 \times 0.2 \times 0.1$</td>
</tr>
</tbody>
</table>

- Encodes CPT with k instead of 2^k values!
BNs with continuous variables

- Often variables range over continuous domains
- **Discretisation** one possible solution but often leads to inaccuracy or requires a lot of discrete values
- Other solution: use of standard families of probability distributions specified in terms of a few parameters
- Example: normal/Gaussian distribution $N(\mu, \sigma^2)(x)$ defined in terms of mean μ and variance σ^2 (needs just two parameters)
- **Hybrid Bayesian Networks** use mixture of discrete and continuous variables (special methods to deal with links between different types – not discussed here)
Summary

- Introduced Bayesian Networks as a structured way of reasoning under uncertainty using probabilities and independence.
- Defined their semantics in terms of JPD representation, and conditional independence statements.
- Gave numerical and topological interpretation of semantics.
- Talked about issues of efficient representation of CPTs.
- Discussed continuous variables and hybrid networks.
- Next time: Exact Inference in Bayesian Networks.