Introduction Inference with JPDs Independence & Bayes' Rule

Informatics 2D – Reasoning and Agents Semester 2, 2019–2020

Alex Lascarides alex@inf.ed.ac.uk

informatics

Lecture 22 – Probabilities and Bayes' Rule 10th March 2020

Last time . . .

Where are we?

- Introduced basics of decision theory (probability theory + utility)
- Talked about random variables, probability distributions
- Introduced basic probability notation and axioms

Today . . .

Probabilities and Bayes' Rule

	informatics		Informatics
Informatics UoE	Informatics 2D 1	Informatics UoE	Informatics 2D 98
Introduction		Introduction	
Inference with JPDs		Inference with JPDs	
Independence & Bayes' Rule		Independence & Bayes' Rule	

Inference with joint probability distributions

- Last time we talked about joint probability distributions (JPDs) but didn't present a method for probabilistic inference using them
- Problem: Given some observed evidence and a query proposition, how can we compute the **posterior probability** of that proposition?
- We will first discuss a simple method using a JPD as "knowledge base"
- Although not very useful in practice, it helps us to discuss interesting issues along the way

Example

- Domain consisting only of Boolean variables *Toothache*, *Cavity* and *Catch* (steel probe catches in tooth)
- Consider the following JPD:

	toot	hache	¬toothache		
	catch	\neg catch	catch	\neg catch	
cavity	0.108	0.012	0.072	0.008	
<i>¬cavity</i>	0.016	0.064	0.144	0.576	

- Probabilities (table entries) sum to 1
- We can compute probability of any proposition, e.g. $P(catch \lor cavity) =$ 0.108 + 0.016 + 0.072 + 0.144 + 0.012 + 0.008 = 0.26

0.108 + 0.016 + 0.072 + 0.144 + 0.012 + 0.008 = 0.36

100

Marginalisation, conditioning & normalisation

- Extracting distribution of subset of variables is called marginalisation: $P(\mathbf{Y}) = \sum_{z} P(\mathbf{Y}, z)$
- Example:
 - $P(cavity) = P(cavity, toothache, catch) + P(cavity, toothache, \neg catch)$ $+ P(cavity, \neg toothache, catch) + P(cavity, \neg toothache, \neg catch)$ = 0.108 + 0.012 + 0.072 + 0.008 = 0.2
- **Conditioning** variant using the product rule:

$$\mathsf{P}(\mathsf{Y}) = \sum_{\mathsf{z}} \mathsf{P}(\mathsf{Y}|\mathsf{z}) P(\mathsf{z})$$

Marginalisation, conditioning & normalisation

Computing conditional probabilities:

$$egin{aligned} & P(\textit{cavity} \mid \textit{toothache}) = rac{P(\textit{cavity} \wedge \textit{toothache})}{P(\textit{toothache})} \ &= rac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6 \end{aligned}$$

- Normalisation ensures probabilities sum to 1, normalisation constants often denoted by α
- Example:

$$\begin{aligned} \mathbf{P}(\textit{Cavity}|\textit{toothache}) &= \alpha \mathbf{P}(\textit{Cavity},\textit{toothache}) \\ &= \alpha [\mathbf{P}(\textit{Cavity},\textit{toothache},\textit{catch}) + \mathbf{P}(\textit{Cavity},\textit{toothache},\neg\textit{catch})] \\ &= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle] = \alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle \end{aligned}$$

informatics

Informatics UoE	Informatics 2D	101	Informatics UoE	Informatics 2D	102
Introduction Inference with JPDs			Introduction Inference with JPDs	Bayes' rule	
Independence & Bayes' Rule Summary			Independence & Bayes' Rule Summary	Combining evidence	

A general inference procedure

- ▶ Let X be a query variable (e.g. *Cavity*), **E** set of evidence variables (e.g. {*Toothache*}) and **e** their observed values, **Y** remaining unobserved variables
- Query evaluation: $\mathbf{P}(X|\mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{v}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
- \blacktriangleright Note that X, E, and Y constitute complete set of variables, i.e. P(x, e, y) simply a subset of probabilities from the JPD
- For every value x_i of X, sum over all values of every variable in Y and normalise the resulting probability vector
- > Only theoretically relevant, it requires $O(2^n)$ steps (and entries) for *n* Boolean variables
- Basically, all methods we will talk about deal with tackling this problem!

Independence

- ▶ Suppose we extend our example with the variable *Weather*
- ▶ What is the relationship between old and new JPD?
- Can compute P(toothache, catch, cavity, Weather = cloudy) as:

P(Weather = cloudy | toothache, catch, cavity) P(toothache, catch, cavity)

▶ And since the weather does not depend on dental stuff, we expect that

P(Weather = cloudy | toothache, catch, cavity) = P(Weather = cloudy)

So

P(toothache, catch, cavity, Weather = cloudy) =

P(Weather = cloudy)P(toothache, catch, cavity)

▶ One 8-element and one 4-element table rather than a 32-table! informatics Informatics UoE Informatics 2D

103

informatics

104

informatics

Bayes' rule Applying Bayes' rule Combining evidence

Independence

> This is called **independence**, usually written as

Independence & Bayes' Rule

Inference with JPDs

 $\mathbf{P}(X|Y) = \mathbf{P}(X) \text{ or } \mathbf{P}(Y|X) = \mathbf{P}(Y) \text{ or } \mathbf{P}(X,Y) = \mathbf{P}(X)\mathbf{P}(Y)$

Bayes' rule

Applying Bayes' rule Combining evidence

Depends on domain knowledge; can factor distributions

- Such independence assumptions can help to dramatically reduce complexity
- Independence assumptions are sometimes *necessary* even when not entirely justified, so as to make probabilistic reasoning in the domain practical (more later).

Bayes' rule

Bayes' rule is derived by writing the product rule in two forms and equating them:

$$\left.\begin{array}{l} P(a \wedge b) = P(a|b)P(b) \\ P(a \wedge b) = P(b|a)P(a) \end{array}\right\} \Rightarrow P(b|a) = \frac{P(a|b)P(b)}{P(a)}$$

General case for multivaried variables using background evidence e:

$$\mathbf{P}(Y|X, \mathbf{e}) = rac{\mathbf{P}(X|Y, \mathbf{e})\mathbf{P}(Y|\mathbf{e})}{\mathbf{P}(X|\mathbf{e})}$$

Useful because often we have good estimates for three terms on the right and are interested in the fourth

domain practical (more later).		informatics			informatics
Informatics UoE	Informatics 2D	105	Informatics UoE	Informatics 2D	106
Introduction Inference with JPDs Independence & Bayes' Rule Summary	Bayes' rule Applying Bayes' rule Combining evidence		Introduction Inference with JPDs Independence & Bayes' Rule Summary	Bayes' rule Applying Bayes' rule Combining evidence	

Applying Bayes' rule

Example: meningitis causes stiff neck with 50%, probability of meningitis (m) 1/50000, probability of stiff neck (s) 1/20

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{\frac{1}{2} \times \frac{1}{50000}}{\frac{1}{20}} = \frac{1}{5000}$$

- Previously, we were able to avoid calculating probability of evidence (P(s)) by using normalisation
- With Bayes' rule: $\mathbf{P}(M|s) = \alpha \langle P(s|m)P(m), P(s|\neg m)P(\neg m) \rangle$
- ► Usefulness of this depends on whether P(s|¬m) is easier to calculate than P(s)
- Obvious question: why would conditional probability be available in one direction and not in the other?
- Diagnostic knowledge (from symptoms to causes) is often fragile
 (e.g. P(m|s) will go up if P(m) goes up due to epidemic)

Combining evidence

Attempting to use additional evidence is easy in the JPD model

 $\mathbf{P}(\textit{Cavity}|\textit{toothache} \land \textit{catch}) = \alpha \langle 0.108, 0.016 \rangle \approx \langle 0.871, 0.129 \rangle$

but requires additional knowledge in Bayesian model:

 $\mathbf{P}(\mathit{Cavity}|\mathit{toothache} \land \mathit{catch}) = \alpha \mathbf{P}(\mathit{toothache} \land \mathit{catch}|\mathit{Cavity}) \mathbf{P}(\mathit{Cavity})$

- This is basically almost as hard as JPD calculation
- Refining idea of independence: Toothache and Catch are independent given presence/absence of Cavity (both caused by cavity, no effect on each other)

 $P(toothache \land catch|Cavity) = P(toothache|Cavity)P(catch|Cavity)$

107

108

Bayes' rule Applying Bayes' rule Combining evidence

Introduction Inference with JPDs Independence & Bayes' Rule

Conditional independence

Two variables X and Y are conditionally independent given Z if
P(X, Y|Z) = P(X|Z)P(Y|Z)

Bayes' rule

Applying Bayes' rule Combining evidence

- Equivalent forms $\mathbf{P}(X|Y,Z) = \mathbf{P}(X|Z)$, $\mathbf{P}(Y|X,Z) = \mathbf{P}(Y|Z)$
- ► So in our example:

 $\mathbf{P}(\mathit{Cavity}|\mathit{toothache} \land \mathit{catch}) = \alpha \mathbf{P}(\mathit{toothache}|\mathit{Cavity}) \mathbf{P}(\mathit{catch}|\mathit{Cavity}) \mathbf{P}(\mathit{Cavity})$

- As before, this allows us to decompose large JPD tables into smaller ones, grows as O(n) instead of O(2ⁿ)
- This is what makes probabilistic reasoning methods scalable at all!

Conditional independence

- Conditional independence assumptions much more often reasonable than absolute independence assumptions
- Naive Bayes model:

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i | Cause)$$

- Based on the idea that all effects are conditionally independent given the cause variable
- Also called Bayesian classifier or (by some) even "idiot Bayes model"
- Works surprisingly well in many domains despite its simplicity!

		informatics			informatics
Informatics UoE	Informatics 2D	109	9 Informatics UoE	Informatics 2D	110
Introduction Inference with JPDs Independence & Bayes' Rule Summary					

Summary

- Probabilistic inference with full JPDs
- Independence and conditional independence
- Bayes' rule and its applications problems with fairly simple techniques
- Next time: Probabilistic Reasoning with Bayesian Networks

informatics