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Where are we?

Last time . . .

! Introduced basics of decision theory
(probability theory + utility)

! Talked about random variables, probability distributions

! Introduced basic probability notation and axioms

Today . . .

! Probabilities and Bayes’ Rule
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Inference with joint probability distributions

! Last time we talked about joint probability distributions (JPDs)
but didn’t present a method for probabilistic inference using
them

! Problem: Given some observed evidence and a query proposition,
how can we compute the posterior probability of that
proposition?

! We will first discuss a simple method using a JPD as “knowledge
base”

! Although not very useful in practice, it helps us to discuss
interesting issues along the way
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Example

! Domain consisting only of Boolean variables Toothache, Cavity
and Catch (steel probe catches in tooth)

! Consider the following JPD:

toothache ¬toothache

catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

! Probabilities (table entries) sum to 1

! We can compute probability of any proposition, e.g.
P(catch ∨ cavity) =
0.108 + 0.016 + 0.072 + 0.144 + 0.012 + 0.008 = 0.36
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Marginalisation, conditioning & normalisation

! Extracting distribution of subset of variables is called
marginalisation: P(Y) =

∑
z P(Y, z)

! Example:

P(cavity) = P(cavity , toothache, catch) + P(cavity , toothache, ¬catch)

+ P(cavity , ¬toothache, catch) + P(cavity , ¬toothache, ¬catch)

= 0.108 + 0.012 + 0.072 + 0.008 = 0.2

! Conditioning – variant using the product rule:

P(Y) =
∑

z

P(Y|z)P(z)
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Marginalisation, conditioning & normalisation
! Computing conditional probabilities:

P(cavity |toothache) =
P(cavity ∧ toothache)

P(toothache)

=
0.108 + 0.012

0.108 + 0.012 + 0.016 + 0.064
= 0.6

! Normalisation ensures probabilities sum to 1, normalisation
constants often denoted by α

! Example:

P(Cavity |toothache) = αP(Cavity , toothache)

= α[P(Cavity , toothache, catch) + P(Cavity , toothache,¬catch)]

= α[⟨0.108, 0.016⟩+⟨0.012, 0.064⟩] = α⟨0.12, 0.08⟩ = ⟨0.6, 0.4⟩
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A general inference procedure

! Let X be a query variable (e.g. Cavity), E set of evidence variables
(e.g. {Toothache}) and e their observed values, Y remaining
unobserved variables

! Query evaluation: P(X |e) = αP(X , e) = α
∑

y P(X , e, y)

! Note that X , E, and Y constitute complete set of variables,
i.e. P(x , e, y) simply a subset of probabilities from the JPD

! For every value xi of X , sum over all values of every variable in Y
and normalise the resulting probability vector

! Only theoretically relevant, it requires O(2n) steps (and entries)
for n Boolean variables

! Basically, all methods we will talk about deal with tackling this
problem!
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Bayes’ rule
Applying Bayes’ rule
Combining evidence

Independence

! Suppose we extend our example with the variable Weather

! What is the relationship between old and new JPD?
! Can compute P(toothache, catch, cavity ,Weather = cloudy) as:

P(Weather = cloudy |toothache, catch, cavity)P(toothache, catch, cavity)

! And since the weather does not depend on dental stuff, we expect
that

P(Weather = cloudy |toothache, catch, cavity) = P(Weather = cloudy)

! So

P(toothache, catch, cavity , Weather = cloudy) =

P(Weather = cloudy)P(toothache, catch, cavity)

! One 8-element and one 4-element table rather than a 32-table!
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Independence
! This is called independence, usually written as

P(X |Y ) = P(X ) or P(Y |X ) = P(Y ) or P(X ,Y ) = P(X )P(Y )

! Depends on domain knowledge; can factor distributions

Weather
Toothache Catch

Cavity

decomposes 
      into

WeatherToothache Catch
Cavity

decomposes 
       into

Coin1 Coinn

Coin1 Coinn

! Such independence assumptions can help to dramatically reduce
complexity

! Independence assumptions are sometimes necessary even when not
entirely justified, so as to make probabilistic reasoning in the
domain practical (more later).
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Bayes’ rule

! Bayes’ rule is derived by writing the product rule in two forms
and equating them:

P(a ∧ b) = P(a|b)P(b)
P(a ∧ b) = P(b|a)P(a)

}
⇒ P(b|a) =

P(a|b)P(b)

P(a)

! General case for multivaried variables using background evidence e:

P(Y |X , e) =
P(X |Y , e)P(Y |e)

P(X |e)
! Useful because often we have good estimates for three terms on

the right and are interested in the fourth
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Applying Bayes’ rule
! Example: meningitis causes stiff neck with 50%, probability of

meningitis (m) 1/50000, probability of stiff neck (s) 1/20

P(m|s) =
P(s|m)P(m)

P(s)
=

1
2 × 1

50000
1
20

=
1

5000

! Previously, we were able to avoid calculating probability of
evidence (P(s)) by using normalisation

! With Bayes’ rule: P(M|s) = α⟨P(s|m)P(m),P(s|¬m)P(¬m)⟩
! Usefulness of this depends on whether P(s|¬m) is easier to

calculate than P(s)
! Obvious question: why would conditional probability be available

in one direction and not in the other?
! Diagnostic knowledge (from symptoms to causes) is often fragile

(e.g. P(m|s) will go up if P(m) goes up due to epidemic)
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Combining evidence

! Attempting to use additional evidence is easy in the JPD model

P(Cavity |toothache ∧ catch) = α⟨0.108, 0.016⟩ ≈ ⟨0.871, 0.129⟩

but requires additional knowledge in Bayesian model:

P(Cavity |toothache ∧ catch) = αP(toothache ∧ catch|Cavity)P(Cavity)

! This is basically almost as hard as JPD calculation

! Refining idea of independence: Toothache and Catch are
independent given presence/absence of Cavity (both caused by
cavity, no effect on each other)

P(toothache ∧ catch|Cavity) = P(toothache|Cavity)P(catch|Cavity)
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Conditional independence

! Two variables X and Y are conditionally independent given Z if
P(X ,Y |Z ) = P(X |Z )P(Y |Z )

! Equivalent forms P(X |Y ,Z ) = P(X |Z ), P(Y |X ,Z ) = P(Y |Z )
! So in our example:

P(Cavity |toothache∧catch) = αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

! As before, this allows us to decompose large JPD tables into
smaller ones, grows as O(n) instead of O(2n)

! This is what makes probabilistic reasoning methods scalable at all!
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Conditional independence

! Conditional independence assumptions much more often
reasonable than absolute independence assumptions

! Naive Bayes model:

P(Cause,Effect1, . . . ,Effectn) = P(Cause)
∏

i

P(Effecti |Cause)

! Based on the idea that all effects are conditionally independent
given the cause variable

! Also called Bayesian classifier or (by some) even “idiot Bayes
model”

! Works surprisingly well in many domains despite its simplicity!
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Summary

! Probabilistic inference with full JPDs

! Independence and conditional independence

! Bayes’ rule and its applications problems with fairly simple
techniques

! Next time: Probabilistic Reasoning with Bayesian Networks
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