
Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Informatics 2D – Reasoning and Agents
Semester 2, 2019–2020

Alex Lascarides
alex@inf.ed.ac.uk

Lecture 19 – Planning and Acting in the Real World II
3rd March 2020

Informatics UoE Informatics 2D 1



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Where are we?

Last time . . .

! Looked at methods for real-world planning

! Sensorless planning and contingent planning

! Fully and partially observable environments

Today . . .

! Planning and Acting in the Real World II

Informatics UoE Informatics 2D 62



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Execution monitoring and replanning

! Execution monitoring = checking whether things are going
according to plan (necessitated by unbounded indeterminacy in
realistic environments)
! Action monitoring = checking whether next action is feasible
! Plan monitoring = checking whether remainder of plan is feasible

! Replanning = ability to find new plan when things go wrong
(usually repairing the old plan)

! Taken together these methods yield powerful planning abilities

Informatics UoE Informatics 2D 63



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Action monitoring and replanning
! While attempting to get from S to G , a problem is encountered in

E , agent discovers actual state is O and plans to get to P and
execute the rest of the original plan

whole plan

plan

repair

S P

O

E G

continuation

Informatics UoE Informatics 2D 64



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Plan monitoring

! Action monitoring often results in suboptimal behaviour, executes
everything until actual failure

! Plan monitoring checks preconditions for entire remaining plan

! Can also take advantage of serendipity (unexpected
circumstances might make remaining plan easier)

! In partially observable environments things are more complex
(sensing actions have to be planned for, they can fail in turn, etc.)

Informatics UoE Informatics 2D 65



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Hierarchical decomposition in planning

! Hierarchical decomposition seems a natural idea to improve
planning capabilities.

! Key idea: at each level of the hierarchy, activity involves only
small number of steps (i.e. small computational cost)

! Hierarchical task network (HTN) planning: initial plan provides
only high-level description, refined by action refinements

! Refinement process continued until plan consists only of primitive
actions

Informatics UoE Informatics 2D 66



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Representing action decompositions

! Each high level action (HLA) has (at least) one refinement into a
sequence of actions.

! The actions in the sequence may be HLAs or primitive.
! So HLAs form a hierarchy!

! If they’re all primitive, then that’s an implementation of the HLA.

Informatics UoE Informatics 2D 67



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Example: Go to SF Airport

Refinment(Go(Home, SFO),

Precond:At(Car,Home)

Steps:[Drive(Home, SFOLongTermParking)

Shuttle(SFOLongTermParking, SFO)])

Refinment(Go(Home, SFO),

Precond:Cash,At(Home)

Steps:[Taxi(Home, SFO)])

Informatics UoE Informatics 2D 68



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Refinements can be Recursive

Refinment(Navigate([a, b], [x , y ]),

Precond:a = x , b = y

Steps:[])

Refinment(Navigate([a, b], [x , y ]),

Precond:Connected([a, b], [a − 1, b])

Steps:[Left,Navigate([a − 1, b], [x , y ])])

Refinment(Navigate([a, b], [x , y ]),

Precond:Connected([a, b], [a + 1, b])

Steps:[Right,Navigate([a + 1, b], [x , y ])])

Informatics UoE Informatics 2D 69



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

High-Level Plans

! High-Level Plans (HLP) are a sequence of HLAs.

! An implementation of a High Level Plan is the concatenation of
an implementation of each of its HLAs.

! An HLP achieves the goal from an initial state if at least one of its
implementations does this.

! Not all implementations of an HLP have to reach the goal state!

! The agent gets to decide which implementation of which HLAs to
execute.

Informatics UoE Informatics 2D 70



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Searching for Primitive Solutions

! The HLA plan library is a hierarchy:
! (Ordered) Daughters to an HLA are the sequences of actions

provided by one of its refinements;
! Because a given HLA can have more than one refinement, there

can be more than one node for a given HLA in the hierarchy.

! This hierarchy is essentially a search space of action sequences
that conform to knowledge about how high-level actions can be
broken down.

! So you can search this space for a plan!

Informatics UoE Informatics 2D 71



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Searching for Primitive Solutions: Breadth First

! Start your plan P with the HLA [Act],

! Take the first HLA A in P (recall that P is an action sequence).

! Do a breadth-first search in your hierarchical plan library, to find a
refinement of A whose preconditions are satisfied by the outcome
of the action in P that is prior to A.

! Replace A in P with this refinement.
! Keep going until your plan P has no HLAs and either:

1. Your plan P ’s outcome is the goal, in which case return P ; or
2. Your plan P ’s outcome is not the goal, in which case return failure.

Informatics UoE Informatics 2D 72



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Problems!

! Like forward search, you consider lots of irrelevant actions.

! The algorithm essentially refines HLAs right down to primitive
actions so as to determine if a plan will succeed.

! This contradicts common sense!

! Sometimes you know an HLA will work regardless of how it’s
broken down!

! We don’t need to know which route to take to SFOParking to
know this plan works:

[Drive(Home,SFOParking),Shuttle(SFOParking ,SFO)]

! We can capture this if we add to HLAs themselves a set of
preconditions and effects.

Informatics UoE Informatics 2D 73



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Adding Preconditions and Effects to HLAs

! One challenge in specifying preconditions and effects of an HLA is
that the HLA may have more than one refinement, each one with
slightly different preconditions and effects!
! If you refine Go(Home, SFO) with Taxi action: you need Cash.
! If you refine it with Drive, you don’t!
! This difference may affect your choice on how to refine the HLA!

! Recall that an HLA achieves a goal if one of its refinements does
this.

! And you can choose the refinement!

Informatics UoE Informatics 2D 74



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Getting Formal
! s ′ ∈ Reach(s, h) iff s ′ is reachable from at least one of HLA h’s

refinements, given (initial) state s.

Reach(s, [h1, h2]) =
⋃

s′∈Reach(s,h1)

Reach(s ′, h2)

! HLP p achieves goal g given initial state s iff ∃s ′ st

s ′ |= g and s ′ ∈ Reach(s, p)

! So we should search HLPs to find a p with this relation to g , and
then focus on refining it.

! But a pre-requisite to this algorithm is to define Reach(s, h) for
each h and s.

! In other words, we still need to determine how to represent effects
(and preconditions) of HLAs. . .

Informatics UoE Informatics 2D 75



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Defining Reach

! A primitive action makes a fluent true, false, or leaves it
unchanged.

! But with HLAs you sometimes get to choose, by choosing a
particular refinement!

! We add new notation to reflect this:
+̃A: you can possibly add A (or leave A unchanged)
−̃A: you can possibly delete A (or leave A unchanged)
+̃A: you can possibly add A, or

possibly delete A (or leave A unchanged)
! You should now derive the correct preconditions and effects from

its refinements!

Informatics UoE Informatics 2D 76



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Our SFO Example

Refinment(Go(Home, SFO),

Precond:At(Car,Home)

Steps:[Drive(Home, SFOLongTermParking)

Shuttle(SFOLongTermParking, SFO)])

Refinment(Go(Home, SFO),

Precond:Cash,At(Home)

Steps:[Taxi(Home, SFO)])

Informatics UoE Informatics 2D 77



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

The ‘Primitive’ Actions

Action(Taxi(a, b),

Precond:Cash,At(Taxi, a)

Effect:¬Cash,¬At(Taxi, a),At(Taxi, b))

Action(Drive(a, b),

Precond:At(Car, a)

Effect:¬At(Car, a),At(Car, b))

Action(Shuttle(a, b),

Precond:At(Shuttle, a)

Effect:¬At(Shuttle, a),At(Shuttle, b))

Informatics UoE Informatics 2D 78



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Deriving the Preconds and Effects of the HLA

! ¬Cash is Effect of one HLA refinement, but not the other.

! So ¬̃Cash in HLA Effect!

Not so Simple!

! Similar argument for At(Car,SFOParking)

! But you can’t choose the combination:
¬Cash ∧ At(Car,SFOParking)

! Solution is to write approximate descriptions.

Informatics UoE Informatics 2D 79



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Approximate Descriptions

Optimistic Description: Reach+(s, h)

! Take union of all possible outcomes from all refinements.

! So this includes ¬̃Cash and +̃At(Car,SFOParking).

! This overgenerates reachable states.

Pessimistic Description: Reach−(s, h)

! Only states that satisfy effects from all refinements survive.

! So this does not include ¬̃Cash or +̃At(Car,SFOParking).

! This undergenerates reachable states.

Reach−(s, h) ⊆ Reach(s, h) ⊆ Reach+(s, h)

Informatics UoE Informatics 2D 80



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Representing action refinements
Primitive Search
More Advanced Search

Algorithm for Finding a Plan

Two Important Facts:

1. If ∃s ′ ∈ Reach−(s, h) st s ′ |= g , you know h can succeed.

2. If ¬∃s ′ ∈ Reach+(s, h) st s ′ |= g , you know h will fail!

The Algorithm:

! Do breadth first search as before.

! But now you can stop searching and implement instead when you
reach an h where 1. is true.

! And you can drop h (and all its refinements) when 2. is true.

! If 1. and 2. are both false for the current h, then you don’t know
if h will succeed or fail, but you can find out by refining it.

Informatics UoE Informatics 2D 81



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Summary

! Execution monitoring: checking success of execution

! Replanning: repairing plans in case of failure

! HLAs and HLPs

! Using refinements and preconditions and effects of primitive
actions to approximate which states are reachable.

! Such approximate descriptions of HLAs help to inform search and
when to refine an HLP so as to reach a goal.

! Next time: Acting under Uncertainty

Informatics UoE Informatics 2D 82


