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Where are we?

Last time . . .

! Looked at methods for real-world planning

! Sensorless planning and contingent planning

! Fully and partially observable environments

Today . . .

! Planning and Acting in the Real World II
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Execution monitoring and replanning

! Execution monitoring = checking whether things are going
according to plan (necessitated by unbounded indeterminacy in
realistic environments)
! Action monitoring = checking whether next action is feasible
! Plan monitoring = checking whether remainder of plan is feasible

! Replanning = ability to find new plan when things go wrong
(usually repairing the old plan)

! Taken together these methods yield powerful planning abilities

Informatics UoE Informatics 2D 63



Introduction
Execution monitoring and replanning

Hierarchical Planning
Summary

Action monitoring and replanning
! While attempting to get from S to G , a problem is encountered in

E , agent discovers actual state is O and plans to get to P and
execute the rest of the original plan

whole plan

plan

repair

S P

O

E G

continuation
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Plan monitoring

! Action monitoring often results in suboptimal behaviour, executes
everything until actual failure

! Plan monitoring checks preconditions for entire remaining plan

! Can also take advantage of serendipity (unexpected
circumstances might make remaining plan easier)

! In partially observable environments things are more complex
(sensing actions have to be planned for, they can fail in turn, etc.)
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Hierarchical decomposition in planning

! Hierarchical decomposition seems a natural idea to improve
planning capabilities.

! Key idea: at each level of the hierarchy, activity involves only
small number of steps (i.e. small computational cost)

! Hierarchical task network (HTN) planning: initial plan provides
only high-level description, refined by action refinements

! Refinement process continued until plan consists only of primitive
actions
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Representing action decompositions

! Each high level action (HLA) has (at least) one refinement into a
sequence of actions.

! The actions in the sequence may be HLAs or primitive.
! So HLAs form a hierarchy!

! If they’re all primitive, then that’s an implementation of the HLA.
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Example: Go to SF Airport

Refinment(Go(Home, SFO),

Precond:At(Car,Home)

Steps:[Drive(Home, SFOLongTermParking)

Shuttle(SFOLongTermParking, SFO)])

Refinment(Go(Home, SFO),

Precond:Cash,At(Home)

Steps:[Taxi(Home, SFO)])
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Refinements can be Recursive

Refinment(Navigate([a, b], [x , y ]),

Precond:a = x , b = y

Steps:[])

Refinment(Navigate([a, b], [x , y ]),

Precond:Connected([a, b], [a − 1, b])

Steps:[Left,Navigate([a − 1, b], [x , y ])])

Refinment(Navigate([a, b], [x , y ]),

Precond:Connected([a, b], [a + 1, b])

Steps:[Right,Navigate([a + 1, b], [x , y ])])
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High-Level Plans

! High-Level Plans (HLP) are a sequence of HLAs.

! An implementation of a High Level Plan is the concatenation of
an implementation of each of its HLAs.

! An HLP achieves the goal from an initial state if at least one of its
implementations does this.

! Not all implementations of an HLP have to reach the goal state!

! The agent gets to decide which implementation of which HLAs to
execute.
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Searching for Primitive Solutions

! The HLA plan library is a hierarchy:
! (Ordered) Daughters to an HLA are the sequences of actions

provided by one of its refinements;
! Because a given HLA can have more than one refinement, there

can be more than one node for a given HLA in the hierarchy.

! This hierarchy is essentially a search space of action sequences
that conform to knowledge about how high-level actions can be
broken down.

! So you can search this space for a plan!
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Searching for Primitive Solutions: Breadth First

! Start your plan P with the HLA [Act],

! Take the first HLA A in P (recall that P is an action sequence).

! Do a breadth-first search in your hierarchical plan library, to find a
refinement of A whose preconditions are satisfied by the outcome
of the action in P that is prior to A.

! Replace A in P with this refinement.
! Keep going until your plan P has no HLAs and either:

1. Your plan P ’s outcome is the goal, in which case return P ; or
2. Your plan P ’s outcome is not the goal, in which case return failure.
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Problems!

! Like forward search, you consider lots of irrelevant actions.

! The algorithm essentially refines HLAs right down to primitive
actions so as to determine if a plan will succeed.

! This contradicts common sense!

! Sometimes you know an HLA will work regardless of how it’s
broken down!

! We don’t need to know which route to take to SFOParking to
know this plan works:

[Drive(Home,SFOParking),Shuttle(SFOParking ,SFO)]

! We can capture this if we add to HLAs themselves a set of
preconditions and effects.
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Adding Preconditions and Effects to HLAs

! One challenge in specifying preconditions and effects of an HLA is
that the HLA may have more than one refinement, each one with
slightly different preconditions and effects!
! If you refine Go(Home, SFO) with Taxi action: you need Cash.
! If you refine it with Drive, you don’t!
! This difference may affect your choice on how to refine the HLA!

! Recall that an HLA achieves a goal if one of its refinements does
this.

! And you can choose the refinement!
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Getting Formal
! s ′ ∈ Reach(s, h) iff s ′ is reachable from at least one of HLA h’s

refinements, given (initial) state s.

Reach(s, [h1, h2]) =
⋃

s′∈Reach(s,h1)

Reach(s ′, h2)

! HLP p achieves goal g given initial state s iff ∃s ′ st

s ′ |= g and s ′ ∈ Reach(s, p)

! So we should search HLPs to find a p with this relation to g , and
then focus on refining it.

! But a pre-requisite to this algorithm is to define Reach(s, h) for
each h and s.

! In other words, we still need to determine how to represent effects
(and preconditions) of HLAs. . .
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Defining Reach

! A primitive action makes a fluent true, false, or leaves it
unchanged.

! But with HLAs you sometimes get to choose, by choosing a
particular refinement!

! We add new notation to reflect this:
+̃A: you can possibly add A (or leave A unchanged)
−̃A: you can possibly delete A (or leave A unchanged)
+̃A: you can possibly add A, or

possibly delete A (or leave A unchanged)
! You should now derive the correct preconditions and effects from

its refinements!
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Our SFO Example

Refinment(Go(Home, SFO),

Precond:At(Car,Home)

Steps:[Drive(Home, SFOLongTermParking)

Shuttle(SFOLongTermParking, SFO)])

Refinment(Go(Home, SFO),

Precond:Cash,At(Home)

Steps:[Taxi(Home, SFO)])
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The ‘Primitive’ Actions

Action(Taxi(a, b),

Precond:Cash,At(Taxi, a)

Effect:¬Cash,¬At(Taxi, a),At(Taxi, b))

Action(Drive(a, b),

Precond:At(Car, a)

Effect:¬At(Car, a),At(Car, b))

Action(Shuttle(a, b),

Precond:At(Shuttle, a)

Effect:¬At(Shuttle, a),At(Shuttle, b))
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Deriving the Preconds and Effects of the HLA

! ¬Cash is Effect of one HLA refinement, but not the other.

! So ¬̃Cash in HLA Effect!

Not so Simple!

! Similar argument for At(Car,SFOParking)

! But you can’t choose the combination:
¬Cash ∧ At(Car,SFOParking)

! Solution is to write approximate descriptions.
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Approximate Descriptions

Optimistic Description: Reach+(s, h)

! Take union of all possible outcomes from all refinements.

! So this includes ¬̃Cash and +̃At(Car,SFOParking).

! This overgenerates reachable states.

Pessimistic Description: Reach−(s, h)

! Only states that satisfy effects from all refinements survive.

! So this does not include ¬̃Cash or +̃At(Car,SFOParking).

! This undergenerates reachable states.

Reach−(s, h) ⊆ Reach(s, h) ⊆ Reach+(s, h)
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Algorithm for Finding a Plan

Two Important Facts:

1. If ∃s ′ ∈ Reach−(s, h) st s ′ |= g , you know h can succeed.

2. If ¬∃s ′ ∈ Reach+(s, h) st s ′ |= g , you know h will fail!

The Algorithm:

! Do breadth first search as before.

! But now you can stop searching and implement instead when you
reach an h where 1. is true.

! And you can drop h (and all its refinements) when 2. is true.

! If 1. and 2. are both false for the current h, then you don’t know
if h will succeed or fail, but you can find out by refining it.
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! Execution monitoring: checking success of execution

! Replanning: repairing plans in case of failure

! HLAs and HLPs

! Using refinements and preconditions and effects of primitive
actions to approximate which states are reachable.

! Such approximate descriptions of HLAs help to inform search and
when to refine an HLP so as to reach a goal.

! Next time: Acting under Uncertainty
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