Where are we?

Last time . . .

- we defined the planning problem
- discussed problem with using search and logic in planning
- introduced representation languages for planning
- looked at blocks world example

Today ...

State-space search and partial-order planning

Planning with state-space search

Planning with state-space search

Partial-order planning

Summar

Informatics 2D – Reasoning and Agents Semester 2. 2019–2020

> Alex Lascarides alex@inf.ed.ac.uk

> > informatics

Lecture 17 - State-Space Search and Partial-Order Planning 27th February 2020

- Most straightforward way to think of planning process: search the space of states using action schemata
- Since actions are defined both in terms of preconditions and effects we can search in both directions.
- ► Two methods:
 - 1. forward state-space search: Start in initial state; consider action sequences until goal state is reached.
 - 2. backward state-space search: Start from goal state; consider action sequences until initial state is reached

Heuristics for state-space search

Informatics 2D

Planning with state-space search

informatics

informatics

Planning with state-space search Partial-order_planning

Forward state-space search Backward state-space search Heuristics for state-space search

Forward state-space search

- Also called progression planning
- Formulation of planning problem:
 - Initial state of search is initial state of planning problem (=set of positive literals)
 - Applicable actions are those whose preconditions are satisfied
 - Single successor function works for all planning problems (consequence of action representation)
 - Goal test = checking whether state satisfies goal of planning problem
 - Step cost usually 1, but different costs can be allowed

Backward state-space search

- In normal search, backward approach hard because goal described by a set of constraints (rather than being listed explicitly)
- Problem of how to generate predecessors, but planning representations allow us to consider only relevant actions
- Exclusion of irrelevant actions decreases branching factor
- ▶ In example, only about 20 actions working backward from goal
- Regression planning = computing the states from which applying a given action leads to the goal
- Must ensure that actions are consistent, i.e. they don't undo any desired literals

Forward state-space search Backward state-space search Heuristics for state-space search

Forward state-space search

- Search space is finite in the absence of function symbols
- Any complete graph search algorithm (like A*) will be a complete graph planning algorithm
- Forward search does not solve problem of irrelevant actions (all actions considered from each state)
- Efficiency depends largely on quality of heuristics
- Example:
 - Air cargo problem, 10 airports with 5 planes each, 20 pieces of cargo
 - ► Task: move all 20 pieces of cargo at airport A to airport B
 - Each of 50 planes can fly to 9 airports, each of 200 packages can be unloaded or loaded (individually)
 - So approximately 10K executable actions in each state (50×9×200)
 - Lots of irrelevant actions get considered, although solution is trivial informatics

Informatics UoE Informatics 2D

Planning with state-space search Partial-order planning Summary

Forward state-space search Backward state-space search Heuristics for state-space search

Air cargo domain example

Goal can be described as

 $At(C_1, B) \wedge At(C_2, B) \wedge \ldots At(C_{20}, B)$

- To achieve At(C₁, B) there is only one action, Unload(C₁, p, B) (p unspecified)
- Can do this action only if its preconditions are satisfied.
- So the predecessor to the goal state must include In(C₁, p) ∧ At(p, B), and should not include At(C₁, B) (otherwise irrelevant action)
- ► Full predecessor:

informatics

$$In(C_1,p) \wedge At(p,B) \wedge \ldots \wedge At(C_{20},B)$$

• Load(C_1, p) would be inconsistent (negates $At(C_1, B)$)

Planning with state-space search Partial-order planning

Forward state-space search Backward state-space search Heuristics for state-space search

Backward state-space search

- General process of constructing predecessors for backward search given goal description G, relevant and consistent action A:
 - ▶ Any positive effects of A that appear in G are deleted
 - Each precondition of A is added unless it already appears
- Any standard search algorithm can be used, terminates when predecessor description is satisfied by initial (planing) state
- First-order case may require additional substitutions which must be applied to actions leading from state to goal

Partial-order planning

- State-space search planning algorithms consider totally ordered sequences of actions
- Better not to commit ourselves to complete chronological ordering of tasks (least commitment strategy)
- Basic idea:
 - 1. Add actions to a plan without specifying which comes first unless necessary
 - 2. Combine 'independent' subsequences afterwards
- Partial-order solution will correspond to one or several linearisations of partial-order plan
- Search in plan space rather than state spaces (because your search is over ordering constraints on actions, as well as transitions among states).

informatics

Forward state-space search Backward state-space search Heuristics for state-space search

Heuristics for state-space search

- ► Two possibilities:
 - 1. Divide and Conquer (subgoal decomposition)
 - 2. Derive a Relaxed Problem
- Subgoal decomposition is ...
 - optimistic (admissible) if negative interactions exist (e.g. subplan deletes goal achieved by other subplan)
 - pessimistic (inadmissible) if positive interactions exist (e.g. subplans contain redundant actions)
- Relaxations:
 - drop all preconditions (all actions always applicable, combined with subgoal independence makes prediction even easier)
 - remove all negative effects (and count minimum number of actions so that union satisfies goals)
 - empty delete lists approach (involves running a simple planning problem to compute heuristic value)

Informatics UoE Informatics 2D

Introduction Planning with state-space search Partial-order planning Summary

Total-Order Plans:

The POP algorithm Example Dealing with unbound variables

Example: Put your socks and shoes on

Start	Start	Start	Start	Start	Start
T					
Right Sock	Right Sock	Left Sock	Left Sock	Right Sock	Left Sock
Left Sock	Left Sock	Right Sock	Right Sock	Right Shoe	Left Shoe
	•				
Right Shoe	Left Shoe	Right Shoe	Left Shoe	Left Sock	Right Sock
Left Shoe	Right Shoe	Left Shoe	Right Shoe	Left Shoe	Right Shoe
	_	_		_	
Finish	Finish	Finish	Finish	Finish	Finish

Partial-order planning (POP) as a search problem

Define POP as search problem over plans consisting of:

- ► Actions: initial plan contains dummy actions Start (no preconditions, effect=initial state) and *Finish* (no effects, precondition=goal literals)
- Ordering constraints on actions $A \prec B$ (A must occur before B); contradictory constraints prohibited
- **Causal links** between actions $A \xrightarrow{p} B$ express A achieves p for B (p precondition of B, effect of A, must remain true between A and B); inserting action C with effect $\neg p$ (A \prec C and C \prec B) would lead to conflict
- **• Open preconditions:** set of conditions not vet achieved by the plan (planners try to make open precondition set empty without introducing contradictions)

informatics

Informatics UoE Informatics 2D

Planning with state-space search Partial-order planning

The POP algorithm Example Dealing with unbound variables

The POP algorithm

- Initial plan: Actions: {*Start*, *Finish*}, Orderings: {*Start* \prec *Finish*}, Links: {}, Open preconditions: Preconditions of *Finish*
- \blacktriangleright Pick p from open preconditions on some action B, generate a consistent successor plan for every A that achieves p
- Ensuring consistency:
 - 1. Add $A \xrightarrow{p} B$ and $A \prec B$ to plan. If A new, add A and Start $\prec A$ and $A \prec Finish$ to plan
 - 2. Resolve conflicts between the new link and all actions and between A (if new) and all links as follows: If conflict between $A \xrightarrow{p} B$ and C, add $B \prec C$ or $C \prec A$
- ► Goal test: check whether there are open preconditions (only consistent plans are generated)

informatics

Dealing with unbound variables

The POP algorithm

▶ Final plan for socks and shoes example (without trivial ordering constraints):

Actions: {*RightSock*, *RightShoe*, *LeftSock*, *LeftShoe*, *Start*, *Finish*} Orderings: {*RightSock* \prec *RightShoe*, *LeftSock* \prec *LeftShoe*}

Links: { $RightSock \xrightarrow{RightSockOn} RightShoe$, LeftSock $\stackrel{LeftSockOn}{\rightarrow}$ LeftShoe, RightShoe $\overset{RightShoeOn}{\rightarrow}$ Finish,

LeftShoe $\xrightarrow{LeftShoeOn}$ Finish}

Open preconditions: {}

- **Consistent plan** = plan without cycles in orderings and conflicts with links
- **Solution** = consistent plan without open preconditions
- Every linearisation of a partial-order solution is a total-order solution (implications for execution!)

Informatics UoE Informatics 2D

Planning with state-space search Partial-order planning

The POP algorithm Example Dealing with unbound variables

Partial-order planning example (1)

 $Init(At(Flat, Axle) \land At(Spare, Trunk))$. Goal(At(Spare, Axle)). Action(Remove(Spare, Trunk), PRECOND: At(Spare, Trunk) EFFECT: $\neg At(Spare, Trunk) \land At(Spare, Ground))$ Action(Remove(Flat, Axle), PRECOND: At(Flat, Axle) EFFECT: $\neg At(Flat, Axle) \land At(Flat, Ground))$ Action(PutOn(Spare, Axle), PRECOND: $At(Spare, Ground) \land \neg At(Flat, Axle)$ EFFECT: $\neg At(Spare, Ground) \land At(Spare, Axle))$ Action(LeaveOvernight, PRECOND: EFFECT: $\neg At(Spare, Ground) \land \neg At(Spare, Axle) \land \neg At(Spare, Trunk)$ $\wedge \neg At(Flat, Ground) \wedge \neg At(Flat, Axle))$

Planning with state-space search Partial-order planning The POP algorithm Example Dealing with unbound variables

Partial-order planning example (2)

- Pick (only) open precondition At(Spare, Axle) of Finish Only applicable action = PutOn(Spare, Axle)
- Pick At(Spare, Ground) from PutOn(Spare, Axle) Only applicable action = Remove(Spare, Trunk)
- Situation after two steps:

Partial-order planning example (4)

- Remaining open precondition At(Spare, Trunk), but conflict between Start and ¬At(Spare, Trunk) effect of LeaveOvernight
- No ordering before Start possible or after Remove(Spare, Trunk) possible
- No successor state, backtrack to previous state and remove LeaveOvernight, resulting in this situation:

Partial-order planning example (3)

- Pick ¬At(Flat, Axle) precondition of PutOn(Spare, Axle) Choose LeaveOvernight, effect ¬At(Spare, Ground)
- Conflict with link Remove(Spare, Trunk) ^{At(Spare, Ground)} → PutOn(Spare, A×le)
- Resolve by adding LeaveOvernight ~ Remove(Spare, Trunk) Why is this the only solution?

Planning with state-space search Partial-order planning Summary Partial-order planning

Partial-order planning example (5)

- ▶ Now choose *Remove*(*Flat*, *Axle*) instead of *LeaveOvernight*
- Next, choose At(Spark, Trunk) precondition of Remove(Spare, Trunk) Choose Start to achieve this
- Pick At(Flat, Axle) precondition of Remove(Flat, Axle), choose Start to achieve it
- Final, complete, consistent plan:

informatics

Dealing with unbound variables

- In first-order case, unbound variables may occur during planning process
- Example:

 $\begin{aligned} &Action(Move(b, x, y), \\ &\operatorname{PRECOND}: On(b, x) \land Clear(b) \land Clear(y) \\ &\operatorname{EFFECT}: On(b, y) \land Clear(x) \land \neg On(b, x) \land \neg Clear(y)) \end{aligned}$

achieves On(A, B) under substitution $\{b/A, y/B\}$

Informatics UoE

Applying this substitution yields

Action(Move(A, x, B),

PRECOND: $On(A, x) \land Clear(A) \land Clear(B)$ EFFECT: $On(A, B) \land Clear(x) \land \neg On(A, x) \land \neg Clear(B))$

and x i	s still	unbound	(another	side o	of the	least	commitment	Ċ
approac	h)							

Informatics 2D

```
Introduction
Planning with state-space search
Partial-order planning
```

Dealing with unbound variables

- ► Also has an effect on links, e.g. in example above $Move(A, x, B) \xrightarrow{On(A,B)} Finish$ would be added
- If another action has effect ¬On(A, z) then this is only a conflict if z = B
- Solution: insert inequality constraints (in example: z ≠ B) and check these constraints whenever applying substitutions
- Remark on heuristics: Even harder than in total-order planning, e.g. adapt most-constrained-variable approach from CSPs

informatics

Informatics UoE Informatics 2D

Summary

State-space search approaches (forward/backward)

Planning with state-space search Partial-order planning Summary

- Heuristics for state-space search planning
- Partial-order planning
- The POP algorithms
- POP as search in planning space
- ► POP example
- POP with unbound variables
- ► Next time: Planning and Acting in the Real World I