
Introduction
Planning with state-space search

Partial-order planning
Summary

Informatics 2D – Reasoning and Agents
Semester 2, 2019–2020

Alex Lascarides
alex@inf.ed.ac.uk

Lecture 17 – State-Space Search and Partial-Order Planning
27th February 2020

Informatics UoE Informatics 2D 1

Introduction
Planning with state-space search

Partial-order planning
Summary

Where are we?

Last time . . .

! we defined the planning problem

! discussed problem with using search and logic in planning

! introduced representation languages for planning

! looked at blocks world example

Today . . .

! State-space search and partial-order planning

Informatics UoE Informatics 2D 19

Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

! Most straightforward way to think of planning process:
search the space of states using action schemata

! Since actions are defined both in terms of preconditions and
effects we can search in both directions

! Two methods:

1. forward state-space search: Start in initial state; consider action
sequences until goal state is reached.

2. backward state-space search: Start from goal state; consider
action sequences until initial state is reached

Informatics UoE Informatics 2D 20

Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Planning with state-space search

(a)

(b)

 
At(P1, A)

Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

At(P1, B)
At(P2, B)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

Informatics UoE Informatics 2D 21



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Forward state-space search

! Also called progression planning

! Formulation of planning problem:
! Initial state of search is initial state of planning problem

(=set of positive literals)
! Applicable actions are those whose preconditions are satisfied
! Single successor function works for all planning problems

(consequence of action representation)
! Goal test = checking whether state satisfies goal of planning

problem
! Step cost usually 1, but different costs can be allowed

Informatics UoE Informatics 2D 22

Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Forward state-space search

! Search space is finite in the absence of function symbols

! Any complete graph search algorithm (like A∗) will be a complete
graph planning algorithm

! Forward search does not solve problem of irrelevant actions (all
actions considered from each state)

! Efficiency depends largely on quality of heuristics
! Example:

! Air cargo problem, 10 airports with 5 planes each, 20 pieces of
cargo

! Task: move all 20 pieces of cargo at airport A to airport B
! Each of 50 planes can fly to 9 airports, each of 200 packages can

be unloaded or loaded (individually)
! So approximately 10K executable actions in each state

(50×9 × 200)
! Lots of irrelevant actions get considered, although solution is trivial!

Informatics UoE Informatics 2D 23

Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Backward state-space search

! In normal search, backward approach hard because goal described
by a set of constraints (rather than being listed explicitly)

! Problem of how to generate predecessors, but planning
representations allow us to consider only relevant actions

! Exclusion of irrelevant actions decreases branching factor

! In example, only about 20 actions working backward from goal

! Regression planning = computing the states from which
applying a given action leads to the goal

! Must ensure that actions are consistent, i.e. they don’t undo any
desired literals

Informatics UoE Informatics 2D 24

Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Air cargo domain example

! Goal can be described as

At(C1,B) ∧ At(C2,B) ∧ . . . At(C20,B)

! To achieve At(C1,B) there is only one action, Unload(C1, p,B) (p
unspecified)

! Can do this action only if its preconditions are satisfied.

! So the predecessor to the goal state must include
In(C1, p) ∧ At(p,B), and should not include At(C1,B) (otherwise
irrelevant action)

! Full predecessor:

In(C1, p) ∧ At(p,B) ∧ . . . ∧ At(C20,B)

! Load(C1, p) would be inconsistent (negates At(C1,B))

Informatics UoE Informatics 2D 25



Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Backward state-space search

! General process of constructing predecessors for backward search
given goal description G , relevant and consistent action A:

! Any positive effects of A that appear in G are deleted
! Each precondition of A is added unless it already appears

! Any standard search algorithm can be used, terminates when
predecessor description is satisfied by initial (planing) state

! First-order case may require additional substitutions which must
be applied to actions leading from state to goal

Informatics UoE Informatics 2D 26

Introduction
Planning with state-space search

Partial-order planning
Summary

Forward state-space search
Backward state-space search
Heuristics for state-space search

Heuristics for state-space search

! Two possibilities:

1. Divide and Conquer (subgoal decomposition)
2. Derive a Relaxed Problem

! Subgoal decomposition is . . .
! optimistic (admissible) if negative interactions exist (e.g. subplan

deletes goal achieved by other subplan)
! pessimistic (inadmissible) if positive interactions exist (e.g. subplans

contain redundant actions)

! Relaxations:
! drop all preconditions (all actions always applicable, combined with

subgoal independence makes prediction even easier)
! remove all negative effects (and count minimum number of actions

so that union satisfies goals)
! empty delete lists approach (involves running a simple planning

problem to compute heuristic value)

Informatics UoE Informatics 2D 27

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning

! State-space search planning algorithms consider totally ordered
sequences of actions

! Better not to commit ourselves to complete chronological ordering
of tasks (least commitment strategy)

! Basic idea:
1. Add actions to a plan without specifying which comes first unless

necessary
2. Combine ‘independent’ subsequences afterwards

! Partial-order solution will correspond to one or several
linearisations of partial-order plan

! Search in plan space rather than state spaces (because your
search is over ordering constraints on actions, as well as transitions
among states).

Informatics UoE Informatics 2D 28

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Example: Put your socks and shoes on

StartStartStart

Total-Order Plans:Partial-Order Plan:

Start

Left 
Sock

Finish

Start

Finish

Right 
Sock

Start

Left 
Sock

FinishFinish

Left 
Sock

Finish

Right 
Sock

Finish

Right 
Sock

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Right 
Sock

Right 
Shoe

Left 
Sock

Left 
Shoe

Finish

Left 
Sock

Left 
Sock

Right 
Sock

Right 
Shoe

Right 
Sock

Left 
Shoe

Right 
Shoe

Left 
Shoe

Right 
Shoe

Left 
Shoe

Left 
Sock

Right 
Sock

Left 
Shoe

Right 
Shoe

Left 
Shoe

Right 
Shoe

Left 
Shoe

Right 
Shoe

Informatics UoE Informatics 2D 29



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning (POP) as a search problem

Define POP as search problem over plans consisting of:

! Actions; initial plan contains dummy actions Start (no
preconditions, effect=initial state) and Finish (no effects,
precondition=goal literals)

! Ordering constraints on actions A ≺ B (A must occur before B);
contradictory constraints prohibited

! Causal links between actions A
p→ B express A achieves p for B

(p precondition of B , effect of A, must remain true between A and
B); inserting action C with effect ¬p (A ≺ C and C ≺ B) would
lead to conflict

! Open preconditions: set of conditions not yet achieved by the
plan (planners try to make open precondition set empty without
introducing contradictions)

Informatics UoE Informatics 2D 30

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

The POP algorithm

! Final plan for socks and shoes example (without trivial ordering
constraints):
Actions: {RightSock , RightShoe, LeftSock , LeftShoe, Start, Finish}
Orderings: {RightSock ≺ RightShoe, LeftSock ≺ LeftShoe}
Links: {RightSock

RightSockOn→ RightShoe,

LeftSock
LeftSockOn→ LeftShoe,

RightShoe
RightShoeOn→ Finish,

LeftShoe
LeftShoeOn→ Finish}

Open preconditions: {}
! Consistent plan = plan without cycles in orderings and conflicts

with links
! Solution = consistent plan without open preconditions
! Every linearisation of a partial-order solution is a total-order

solution (implications for execution!)

Informatics UoE Informatics 2D 31

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

The POP algorithm

! Initial plan:
Actions: {Start, Finish}, Orderings: {Start ≺ Finish},

Links: {}, Open preconditions: Preconditions of Finish

! Pick p from open preconditions on some action B , generate a
consistent successor plan for every A that achieves p

! Ensuring consistency:

1. Add A
p→ B and A ≺ B to plan. If A new, add A and Start ≺ A

and A ≺ Finish to plan
2. Resolve conflicts between the new link and all actions and between

A (if new) and all links as follows:

If conflict between A
p→ B and C , add B ≺ C or C ≺ A

! Goal test: check whether there are open preconditions
(only consistent plans are generated)

Informatics UoE Informatics 2D 32

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (1)
Init(At(Flat, Axle) ∧ At(Spare, Trunk)). Goal(At(Spare, Axle)).

Action(Remove(Spare, Trunk),

Precond:At(Spare, Trunk)

Effect:¬At(Spare, Trunk) ∧ At(Spare, Ground))

Action(Remove(Flat, Axle),

Precond:At(Flat, Axle)

Effect:¬At(Flat, Axle) ∧ At(Flat, Ground))

Action(PutOn(Spare, Axle),

Precond:At(Spare, Ground) ∧ ¬At(Flat, Axle)

Effect:¬At(Spare, Ground) ∧ At(Spare, Axle))

Action(LeaveOvernight, Precond:

Effect:¬At(Spare, Ground) ∧ ¬At(Spare, Axle) ∧ ¬At(Spare, Trunk)

∧ ¬At(Flat, Ground) ∧ ¬At(Flat, Axle))

Informatics UoE Informatics 2D 33



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (2)

! Pick (only) open precondition At(Spare,Axle) of Finish
Only applicable action = PutOn(Spare,Axle)

! Pick At(Spare,Ground) from PutOn(Spare,Axle)
Only applicable action = Remove(Spare,Trunk)

! Situation after two steps:

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)Start

At(Flat,Axle)

At(Spare,Trunk)

¬ 

Informatics UoE Informatics 2D 34

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (3)

! Pick ¬At(Flat,Axle) precondition of PutOn(Spare,Axle)
Choose LeaveOvernight, effect ¬At(Spare,Ground)

! Conflict with link

Remove(Spare,Trunk)
At(Spare,Ground)→ PutOn(Spare,Axle)

! Resolve by adding LeaveOvernight ≺ Remove(Spare,Trunk)
Why is this the only solution?

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

LeaveOvernight
At(Flat,Axle)
At(Flat,Ground)
At(Spare,Axle)
At(Spare,Ground)
At(Spare,Trunk)

Start
At(Flat,Axle)

At(Spare,Trunk)

¬ 

¬ 
¬ 
¬ 

¬ 
¬ 

Informatics UoE Informatics 2D 35

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (4)

! Remaining open precondition At(Spare,Trunk), but conflict
between Start and ¬At(Spare,Trunk) effect of LeaveOvernight

! No ordering before Start possible or after Remove(Spare,Trunk)
possible

! No successor state, backtrack to previous state and remove
LeaveOvernight, resulting in this situation:

Remove(Spare,Trunk)At(Spare,Trunk)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)Start

At(Flat,Axle)

At(Spare,Trunk)

¬ 

Informatics UoE Informatics 2D 36

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Partial-order planning example (5)

! Now choose Remove(Flat,Axle) instead of LeaveOvernight

! Next, choose At(Spark ,Trunk) precondition of
Remove(Spare,Trunk)
Choose Start to achieve this

! Pick At(Flat,Axle) precondition of Remove(Flat,Axle), choose
Start to achieve it

! Final, complete, consistent plan:

Start

Remove(Spare,Trunk)At(Spare,Trunk)

Remove(Flat,Axle)At(Flat,Axle)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

At(Flat,Axle)

At(Spare,Trunk)

¬ 

Informatics UoE Informatics 2D 37



Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Dealing with unbound variables

! In first-order case, unbound variables may occur during planning
process

! Example:
Action(Move(b, x , y),

Precond:On(b, x) ∧ Clear(b) ∧ Clear(y)

Effect:On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y))

achieves On(A,B) under substitution {b/A, y/B}
! Applying this substitution yields

Action(Move(A, x , B),

Precond:On(A, x) ∧ Clear(A) ∧ Clear(B)

Effect:On(A, B) ∧ Clear(x) ∧ ¬On(A, x) ∧ ¬Clear(B))

and x is still unbound (another side of the least commitment
approach)

Informatics UoE Informatics 2D 38

Introduction
Planning with state-space search

Partial-order planning
Summary

The POP algorithm
Example
Dealing with unbound variables

Dealing with unbound variables

! Also has an effect on links, e.g. in example above

Move(A, x ,B)
On(A,B)→ Finish would be added

! If another action has effect ¬On(A, z) then this is only a conflict if
z = B

! Solution: insert inequality constraints (in example: z ̸= B) and
check these constraints whenever applying substitutions

! Remark on heuristics: Even harder than in total-order planning,
e.g. adapt most-constrained-variable approach from CSPs

Informatics UoE Informatics 2D 39

Introduction
Planning with state-space search

Partial-order planning
Summary

Summary

! State-space search approaches (forward/backward)

! Heuristics for state-space search planning

! Partial-order planning

! The POP algorithms

! POP as search in planning space

! POP example

! POP with unbound variables

! Next time: Planning and Acting in the Real World I

Informatics UoE Informatics 2D 40


