Lecture 16 – Introduction to Planning
27th February 2018
Where are we?

The first two blocks of the course dealt with . . .

- Basic notions of agency
- Intelligent problem-solving
- Heuristic search, constraints
- Logic & logical reasoning
- Reasoning about actions and time

In the remainder of the course we will talk about . . .

- Planning
- Uncertainty
What is planning?

- **Planning** is the task of coming up with a sequence of actions that will achieve a goal.
- We are only considering **classical planning** in which environments are:
 - fully observable (accessible),
 - deterministic,
 - finite,
 - static (up to agents’ actions),
 - discrete (in actions, states, objects and events).
- (Lifting some of these assumptions will be the subject of the “uncertainty” part of the course.)
Why planning?

- So far we have dealt with two types of agents:
 1. Search-based problem-solving agents
 2. Logical planning agents
- Do these techniques work for solving planning problems?
Why planning?

- Consider a search-based problem-solving agent in a robot shopping world
- Task: Go to the supermarket and get milk, bananas and a cordless drill
- What would a search-based agent do?

Diagram:
- Start
- Go To Pet Store
- Go To School
- Go To Supermarket
- Go To Sleep
- Read A Book
- Sit in Chair
- Etc. Etc. ...
- ...
- Buy Tuna Fish
- Buy Arugula
- Buy Milk
- Talk to Parrot
- Buy a Dog
- Go To Class
- Go To School
- Go To Pet Store
- ...
- Finish
Problems with search

- No goal-directedness.
- No problem decomposition into sub-goals that build on each other
 - May undo past achievements
 - May go to the store 3 times!
- Simple goal test doesn’t allow for the identification of milestones
- How do we find a good heuristic function?
 How do we model the way humans perceive complex goals and the quality of a plan?
How about logic & deductive inference?

- Generally a good idea, allows for “opening up” representations of states, actions, goals and plans
- If $Goal = \text{Have}(\text{Bananas}) \land \text{Have}(\text{Milk})$ this allows achievement of sub-goals (if independent)
- Current state can be described by properties in a compact way (e.g. $\text{Have}(\text{Drill})$ stands for hundreds of states)
- Allows for compact description of actions, for example

 $$\text{Object}(x) \Rightarrow \text{Can}(a, \text{Grab}(x))$$

- Allows for representing a plan hierarchically, e.g. $\text{GoTo}($Supermarket$) = \text{Leave}($House$) \land \text{ReachLocationOf}($Supermarket$) \land \text{Enter}($Supermarket$)$ then decompose further into sub-plans
How about logic & deductive inference?

▶ Problems:
 1. In its general form either awkward (propositional logic) or tractability problems (first-order logic), high complexity
 2. If p is a sequence that achieves the goal, then so is $[a, a^{-1} | p]$!

▶ Solutions: We need
 1. To reduce complexity to allow scaling up.
 2. To allow reasoning to be guided by plan ‘quality’/efficiency.

▶ Do 1. today; 2. next time.
Representing planning problems

- Need a language expressive enough to cover interesting problems, restrictive enough to allow efficient algorithms.
- **Planning Domain Definition Language** or **PDDL**
- PDDL will allow you to express:
 1. states
 2. actions: a description of transitions between states
 3. and goals: a (partial) description of a state.
Representing States and Goals in PDDL

- **States** represented as conjunctions of propositional or function-free first order positive literals:
 - $Happy \land Sunshine, \ At(Plane_1, \ Melbourne) \land At(Plane_2, \ Sydney)$

- So these aren’t states:
 - $At(x, y)$ (no variables allowed),
 - $Love(Father(Fred), \ Fred)$ (no function symbols allowed)
 - $\neg Happy$ (no negation allowed).

Closed-world assumption!

- A **goal** is a partial description of a state, and you can use negation, variables etc. to express that description.
 - $\neg Happy, \ At(x, \ SFO), \ Love(Father(Fred), \ Fred) \ldots$
Actions in PDDL

Action(Fly(p, from, to),

Precond: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

Effect: ¬At(p, from) ∧ At(p, to))

- Actually **action schemata**, as they may contain variables
- **Action name and parameter list** serves to identify the action
- **Precondition**: defines states in which action is **executable**:
 - Conjunction of positive and negative literals, where all variables must occur in action name.
- **Effect**: defines how literals in the input state get changed (anything not mentioned stays the same).
 - Conjunction of positive and negative literals, with all its variables also in the preconditions.
 - Often positive and negative effects are divided into **add list** and **delete list**
The semantics of PDDL: States and their Descriptions

- \(s \models At(P_1, SFO) \) iff \(At(P_1, SFO) \in s \)
- \(s \models \neg At(P_1, SFO) \) iff \(At(P_1, SFO) \notin s \)
- \(s \models \phi(x) \) iff there is a ground term \(d \) such that \(s \models \phi[x/d] \).
- \(s \models \phi \land \psi \) iff \(s \models \phi \) and \(s \models \psi \)
The Semantics of PDDL: Applicable Actions

- Any action is **applicable** in any state that satisfies the precondition with an appropriate substitution for parameters.
- Example: State

\[
\begin{align*}
\text{At}(P_1, \text{Melbourne}) & \land \text{At}(P_2, \text{Sydney}) \land \text{Plane}(P_1) \land \text{Plane}(P_2) \\
& \land \text{Airport}(\text{Sydney}) \land \text{Airport}(\text{Melbourne}) \land \text{Airport}(\text{Heathrow})
\end{align*}
\]

satisfies

\[
\begin{align*}
\text{At}(p, \text{from}) & \land \text{Plane}(p) \land \text{Airport}(\text{from}) \land \text{Airport}(\text{to})
\end{align*}
\]

with substitution (among others)

\[
\{p/P_2, \text{from}/\text{Sydney}, \text{to}/\text{Heathrow}\}
\]
The semantics of PDDL: The Result of an Action

- **Result** of executing action a in state s is state s' with any positive literal P in a’s **Effect**s added to the state and every negative literal $\neg P$ removed from it (under the given substitution).

- In our example s' would be

 $\text{At}(P_1, Melbourne) \land \text{At}(P_2, Heathrow) \land \text{Plane}(P_1) \land \text{Plane}(P_2) \land \text{Airport}(Sydney) \land \text{Airport}(Melbourne) \land \text{Airport}(Heathrow)$

- “PDDL assumption”: every literal not mentioned in the effect remains unchanged (cf. frame problem)

- **Solution** = action sequence that leads from the initial state to a state that satisfies the goal.
Blocks world example

- Given: A set of cube-shaped blocks sitting on a table
- Can be stacked, but only one on top of the other
- Robot arm can move around blocks (one at a time)
- Goal: to stack blocks in a certain way
- Formalisation in PDDL:
 - $On(b, x)$ to denote that block b is on x (block/table)
 - $Move(b, x, y)$ to indicate action of moving b from x to y
 - Precondition for this action: nothing must be stacked on x: $Clear(x)$.
Blocks world example

- Action schema:

\[
\text{Action}(\text{Move}(b, x, y),
\]
\[
\text{Precond: } On(b, x) \land \text{Clear}(b) \land \text{Clear}(y)
\]
\[
\text{Effect: } On(b, y) \land \text{Clear}(x) \land \neg \text{On}(b, x) \land \neg \text{Clear}(y))
\]

- Problem: when \(x = \text{Table}\) or \(y = \text{Table}\) we infer that the table is clear when we have moved a block from it (not true) and require that table is clear to move something on it (not true)

- Solution: introduce another action

\[
\text{Action}(\text{MoveToTable}(b, x),
\]
\[
\text{Precond: } On(b, x) \land \text{Clear}(b)
\]
\[
\text{Effect: } On(b, \text{Table}) \land \text{Clear}(x) \land \neg \text{On}(b, x))
\]
Does this Work?

- Interpret $\text{Clear}(b)$ as “there is space on b to hold a block” (thus $\text{Clear}(\text{Table})$ is always true)
- But without further modification, planner can still use $\text{Move}(b, x, \text{Table})$:
 - Needlessly increases search space
 (not a big problem here, but can be)
- So part of solution is to also add $\text{Block}(b) \land \text{Block}(y)$ to precondition of Move
Summary

- Defined the planning problem
- Discussed problems with search/logic
- Introduced PDDL: a special representation language for planning
- Blocks world example as a famous application domain
- Next time: Algorithms for planning!

State-Space Search and Partial-Order Planning