Where are we?

The first two blocks of the course dealt with . . .

- Basic notions of agency
- Intelligent problem-solving
- Heuristic search, constraints
- Logic & logical reasoning
- Reasoning about actions and time

In the remainder of the course we will talk about . . .

- Planning
- Uncertainty
What is planning?

- **Planning** is the task of coming up with a sequence of actions that will achieve a goal.
- We are only considering **classical planning** in which environments are:
 - fully observable (accessible),
 - deterministic,
 - finite,
 - static (up to agents’ actions),
 - discrete (in actions, states, objects and events).
- (Lifting some of these assumptions will be the subject of the “uncertainty” part of the course.)
Why planning?

- So far we have dealt with two types of agents:
 1. Search-based problem-solving agents
 2. Logical planning agents
- Do these techniques work for solving planning problems?
Why planning?

- Consider a search-based problem-solving agent in a robot shopping world
- Task: Go to the supermarket and get milk, bananas and a cordless drill
- What would a search-based agent do?
Problems with search

- No goal-directedness.
- No problem decomposition into sub-goals that build on each other
 - May undo past achievements
 - May go to the store 3 times!
- Simple goal test doesn’t allow for the identification of milestones
- How do we find a good heuristic function?
 How do we model the way humans perceive complex goals and the quality of a plan?
How about logic & deductive inference?

- Generally a good idea, allows for “opening up” representations of states, actions, goals and plans
- If \(\text{Goal} = \text{Have}(\text{Bananas}) \land \text{Have}(\text{Milk}) \) this allows achievement of sub-goals (if independent)
- Current state can be described by properties in a compact way (e.g. \(\text{Have}(\text{Drill}) \) stands for hundreds of states)
- Allows for compact description of actions, for example

\[
\text{Object}(x) \Rightarrow \text{Can}(a, \text{Grab}(x))
\]

- Allows for representing a plan hierarchically, e.g. \(\text{GoTo}(\text{Supermarket}) = \text{Leave}(\text{House}) \land \text{ReachLocationOf}(\text{Supermarket}) \land \text{Enter}(\text{Supermarket}) \) then decompose further into sub-plans
How about logic & deductive inference?

► Problems:
1. In its general form either awkward (propositional logic) or tractability problems (first-order logic), high complexity
2. If \(p \) is a sequence that achieves the goal, then so is \([a, a^{-1} | p] \! \)

► Solutions: We need
1. To reduce complexity to allow scaling up.
2. To allow reasoning to be guided by plan ‘quality’/efficiency.

► Do 1. today; 2. next time.
Representing planning problems

- Need a language expressive enough to cover interesting problems, restrictive enough to allow efficient algorithms.
- **Planning Domain Definition Language** or **PDDL**
- PDDL will allow you to express:
 1. states
 2. actions: a description of transitions between states
 3. and goals: a (partial) description of a state.
Representing States and Goals in PDDL

- **States** represented as conjunctions of propositional or function-free first order positive literals:
 - \(\text{Happy} \land \text{Sunshine}, \text{At}(\text{Plane}_1, \text{Melbourne}) \land \text{At}(\text{Plane}_2, \text{Sydney}) \)

- So these aren’t states:
 - \(\text{At}(x, y) \) (no variables allowed),
 - \(\text{Love}(\text{Father}(\text{Fred}), \text{Fred}) \) (no function symbols allowed)
 - \(\neg \text{Happy} \) (no negation allowed).

 Closed-world assumption!

- A **goal** is a partial description of a state, and you can use negation, variables etc. to express that description.
 - \(\neg \text{Happy}, \text{At}(x, \text{SFO}), \text{Love}(\text{Father}(\text{Fred}), \text{Fred}) \ldots \)
Actions in PDDL

Action\((\text{Fly}(p, \text{from}, \text{to}),) \)

\textbf{Precond:} \(\text{At}(p, \text{from}) \land \text{Plane}(p) \land \text{Airport}(\text{from}) \land \text{Airport}(\text{to}) \)

\textbf{Effect:} \(\neg \text{At}(p, \text{from}) \land \text{At}(p, \text{to}) \)

- Actually \textbf{action schemata}, as they may contain variables
- Action name and parameter list serves to identify the action
- \textbf{Precondition:} defines states in which action is \textbf{executable}:
 - Conjunction of positive and negative literals, where all variables must occur in action name.
- \textbf{Effect:} defines how literals in the input state get changed (anything not mentioned stays the same).
 - Conjunction of positive and negative literals, with all its variables also in the preconditions.
 - Often positive and negative effects are divided into \textbf{add list} and \textbf{delete list}
The semantics of PDDL: States and their Descriptions

- $s \models \text{At}(P_1, SFO)$ iff $\text{At}(P_1, SFO) \in s$
- $s \models \neg \text{At}(P_1, SFO)$ iff $\text{At}(P_1, SFO) \notin s$
- $s \models \phi(x)$ iff there is a ground term d such that $s \models \phi[x/d]$.
- $s \models \phi \land \psi$ iff $s \models \phi$ and $s \models \psi$
The Semantics of PDDL: Applicable Actions

- Any action is **applicable** in any state that satisfies the precondition with an appropriate substitution for parameters.
- Example: State

\[
\begin{align*}
\text{At}(P_1, Melbourne) & \land \text{At}(P_2, Sydney) \land \text{Plane}(P_1) \land \text{Plane}(P_2) \\
& \land \text{Airport}(Sydney) \land \text{Airport}(Melbourne) \land \text{Airport}(Heathrow)
\end{align*}
\]

satisfies

\[
\begin{align*}
\text{At}(p, from) & \land \text{Plane}(p) \land \text{Airport}(from) \land \text{Airport}(to)
\end{align*}
\]

with substitution (among others)

\[
\{p/P_2, from/Sydney, to/Heathrow\}
\]
The semantics of PDDL: The Result of an Action

- **Result** of executing action a in state s is state s' with any positive literal P in a’s **Effect**s added to the state and every negative literal $\neg P$ removed from it (under the given substitution).
- In our example s' would be

$$At(P_1, Melbourne) \land At(P_2, Heathrow) \land Plane(P_1) \land Plane(P_2)$$

$$\land Airport(Sydney) \land Airport(Melbourne) \land Airport(Heathrow)$$

- “PDDL assumption”: every literal not mentioned in the effect remains unchanged (cf. frame problem)
- **Solution** = action sequence that leads from the initial state to a state that satisfies the goal.
Blocks world example

- Given: A set of cube-shaped blocks sitting on a table
- Can be stacked, but only one on top of the other
- Robot arm can move around blocks (one at a time)
- Goal: to stack blocks in a certain way
- Formalisation in PDDL:
 - $On(b, x)$ to denote that block b is on x (block/table)
 - $Move(b, x, y)$ to indicate action of moving b from x to y
 - Precondition for this action: nothing must be stacked on x: $Clear(x)$.
Blocks world example

- Action schema:

 \[
 \text{Action}(\text{Move}(b, x, y), \\
 \quad \text{Precond}: \text{On}(b, x) \land \text{Clear}(b) \land \text{Clear}(y) \\
 \quad \text{Effect}: \text{On}(b, y) \land \text{Clear}(x) \land \neg \text{On}(b, x) \land \neg \text{Clear}(y))
 \]

- Problem: when \(x = \text{Table}\) or \(y = \text{Table}\) we infer that the table is clear when we have moved a block from it (not true) and require that table is clear to move something on it (not true).

- Solution: introduce another action

 \[
 \text{Action}(\text{MoveToTable}(b, x), \\
 \quad \text{Precond}: \text{On}(b, x) \land \text{Clear}(b) \\
 \quad \text{Effect}: \text{On}(b, \text{Table}) \land \text{Clear}(x) \land \neg \text{On}(b, x))
 \]
Does this Work?

- Interpret $Clear(b)$ as “there is space on b to hold a block” (thus $Clear(Table)$ is always true)
- But without further modification, planner can still use $Move(b, x, Table)$:
 - Needlessly increases search space
 (not a big problem here, but can be)
- So part of solution is to also add $Block(b) \land Block(y)$ to precondition of $Move$
Summary

- Defined the planning problem
- Discussed problems with search/logic
- Introduced PDDL: a special representation language for planning
- Blocks world example as a famous application domain
- Next time: Algorithms for planning!

State-Space Search and Partial-Order Planning