Inf2D 14: Situation Calculus

Cristina Alexandru

School of Informatics, University of Edinburgh

15/02/18

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann
Outline

- Planning
- Situations
- Frame problem
We need ways of:

- representing the world.
- representing the goal.
- representing how actions change the world.

We haven’t said much about the last.

Difficulty: After an action, new things are true, and some previously true facts are no longer true.
Idea:

- **Situations** extend the concept of a state by additional logical terms
 - Consist of initial situation (usually called S_0) and all situations generated by applying an action to a situation.
- Provide facts about situations.
 - By relating predicates to situations.
 - E.g., instead of saying just $On(A, B)$, say (somehow) $On(A, B)$ in situation S_0
- Actions are thus
 - performed in a situation, and
 - produce new situations with new facts.
 - Examples: *Forward* and *Turn(Right)*
Can add an argument for a situation to each predicate that can change.

- E.g., instead of $On(A, B)$, write $On(A, B, S_0)$

Alternatively, introduce a predicate $Holds$

- On etc. become now functions
- E.g., $Holds(On(A, B), S_0)$
- What do things like $On(A, B)$ now mean?

 Either a category of situations, in which A is on B, or a set of those situations.
How This Will Work

- Before some action, we might have in our KB:
 - $On(A, B, S_0)$
 - $On(B, Table, S_0)$

- After an action that moves A to the table, say, we add
 - $Clear(B, S_1)$
 - $On(A, Table, S_1)$

- All these propositions are true. We have dealt with the issue of change, by keeping track of what is true when.
Same Thing, Slightly Different Notation

Before

- \(\text{Holds}(On(A, B), S_0) \)
- \(\text{Holds}(On(B, \text{Table}), S_0) \)

After, add

- \(\text{Holds}(\text{Clear}(B), S_1) \)
- \(\text{Holds}(On(A, \text{Table}), S_1) \)
Representing Actions

- Need to represent:
 - Results of doing an action
 - Conditions that need to be in place to perform an action.
- For convenience, we will define **functions** to abbreviate actions:
 - E.g., $\text{Move}(A, B)$ denotes the action type of moving A onto B.
 - These are action types, because actions themselves are specific to time, etc.
- Now, introduce a **function Result**, designating “the situation resulting from doing an action type in some situation”.
 - E.g., $\text{Result}(\text{Move}(A, B), S_0)$ means “the situation resulting from doing an action of type $\text{Move}(A, B)$ in situation S_0”.
How This Works

- Keep in mind that things like \(\text{Result}(\text{Move}(A, B), S_0) \) are terms, and denote situations. They can appear anywhere we would expect a situation.
- So we can say things like
 \[
 S_1 = \text{Result}(\text{Move}(A, B), S_0),
 \]
 \[
 \text{On}(A, B, \text{Result}(\text{Move}(A, B), S_0)) \equiv \text{On}(A, B, S_1),
 \]
 etc.
- Alternatively,
 \[
 \text{Holds} (\text{On}(A, B), \text{Result} (\text{Move}(A, B), S_0)),
 \]
 etc.
Now, we can describe the results of actions, together with their preconditions.

E.g., “If nothing is on x and y, then one can move x to on top of y, in which case x will then be on y.”

$$\forall x, y, s \ Clear(x, s) \land Clear(y, s) \Rightarrow On(x, y, Result(Move(x, y), s))$$

Alternatively:

$$\forall x, y, s \ Holds(Clear(x), s) \land Holds(Clear(y), s) \Rightarrow Holds(On(x, y), Result(Move(x, y), s))$$

This is an effect axiom.

It includes a precondition as well.
This approach is called the **situation calculus**.

We axiomatise all our actions, then use a general theorem prover to prove that a situation exists in which our goal is true.

The actions in the proof would comprise our plan.
KB:

- On(A, Table, S₀)
- On(B, C, S₀)
- On(C, Table, S₀)
- Clear(A, S₀)
- Clear(B, S₀)

and axioms about actions, etc.

Goal: ∃s'. On(A, B, s')
What happens?

- We try to prove $On(A, B, s')$ for some s'
 - Find axiom
 \[
 \forall x, y, s. Clear(x, s) \land Clear(y, s) \\
 \Rightarrow On(x, y, Result(Move(x, y), s))
 \]
 - By chaining, e.g., goal would be true if we could prove $Clear(A, s) \land Clear(B, s)$ by backward chaining.
 - But both are true in S_0, so we can conclude $On(A, B, Result(Move(A, B), S_0))$

- We are done!
- We look in the proof and see only one action, $Move(A, B)$, which is executed in situation S_0, so this is our plan.
Example: Same Initial Situation, Harder Goal

- KB:
 - $On(A, Table, S_0)$
 - $On(B, C, S_0)$
 - $On(C, Table, S_0)$
 - $Clear(A, S_0)$
 - $Clear(B, S_0)$

 and axioms about actions, etc.

- Goal: $\exists s'. On(A, B, s') \land On(B, C, s')$

1. It's not really harder, B is already on C, and we just showed how to put A on B
With Goal $\text{On}(A, B, s') \land \text{On}(B, C, s')$

- Suppose we try to prove the first subgoal, $\text{On}(A, B, s')$.
 - Use same axiom
 $$\forall x, y, s. \text{Clear}(x, s) \land \text{Clear}(y, s) \implies \text{On}(x, y, \text{Result}(\text{Move}(x, y), s))$$
 - Again, by chaining, we can conclude
 $$\text{On}(A, B, \text{Result}(\text{Move}(A, B), S_0))$$
 - Abbreviating $\text{Result}(\text{Move}(A, B), S_0)$ as S_1, we have
 $$\text{On}(A, B, S_1)$$

- Substituting for s' in our other subgoal makes that $\text{On}(B, C, S_1)$. If this is true, we’re done.
- But we have no reason to believe this is true!
- Sure, $\text{On}(B, C, S_0)$, but how does the planner know this is still true, i.e., $\text{On}(B, C, S_1)$?
- In fact, it doesn’t, so it fails to find an answer!
The Frame Problem

- We have failed to express the fact that everything that isn’t changed by an action stays the same.
- Can fix by adding frame axioms. E.g.:
 \[\forall x, y, z, s. \ Clear(x, s) \Rightarrow \ Clear(x, Result(Paint(x, y), s)) \]

- There are lots of these!
- Is this a big problem?
Can fix with neater formulation:
\[\forall x, y, s, a. \ On(x, y, s) \land (\forall z. a = \text{Move}(x, z) \Rightarrow y = z) \]
\[\Rightarrow \ On(x, y, \text{Result}(a, s)) \]

Can combine with effect axioms to get *successor-state axioms*:
\[\forall x, y, s, a. \ On(x, y, \text{Result}(a, s)) \iff \]
\[On(x, y, s) \land (\forall z. a = \text{Move}(x, z) \Rightarrow y = z) \]
\[\lor (\text{Clear}(x, s) \land \text{Clear}(y, s) \land a = \text{Move}(x, y)) \]
How Does This Help Our Example?

- We want to prove $On(B, C, Result(Move(A, B), S_0))$ given that $On(B, C, S_0)$
- Axiom says $\forall x, y, s, a. On(x, y, Result(a, s)) \iff On(x, y, s) \land (\forall z. a = Move(x, z) \Rightarrow y = z) \land (Clear(x, s) \land Clear(y, s) \Rightarrow a = Move(x, y))$
- So need to show $On(B, C, S_0) \land (\forall z. Move(A, B) = Move(B, z) \Rightarrow C = z)$ is true, which is easy
 - The first conjunct is in the KB.
 - The second one is true since actions are the same only if they have the same name and involve the exact same objects i.e.*
 $A(x_1, \ldots, x_m) = A(y_1, \ldots, y_m)$ iff $x_1 = y_1 \land \cdots \land x_m = y_m$
 so $Move(A, B) = Move(B, z)$ is false.

Note: Another assumption* in KB: $A(x_1, \ldots, x_m) \neq B(y_1, \ldots, y_n)$

*These are known as Unique Action Axioms
Suppose $\forall x. \exists y. G(x, y)$ is goal in resolution refutation.

So, we need to negate the goal:

$$\neg \forall x. \exists y. G(x, y) \equiv \exists x. \forall y. \neg G(x, y)$$

Then skolemise (i.e. drop existential quantifier):

$$\neg G(X_0, y)$$

Intuition:

- y is to be unified to construct witness.
- X_0 must not be instantiated.

Similar story for GMP, but goal not negated, i.e. $G(X_0, y)$, for some y, is used as the goal.
KB and Axioms as Clauses

Constants \(A, B, C, S_0 \)
Variables: \(a, x, y, z, s \)

- **Initial State**
 - \(\text{On}(A, \text{Table}, S_0) \)
 - \(\text{On}(B, C, S_0) \)
 - \(\text{On}(C, \text{Table}, S_0) \)
 - \(\text{Clear}(A, S_0) \)
 - \(\text{Clear}(B, S_0) \)

- **(neg.) Goal**
 - \(\neg \text{On}(A, B, s') \lor \neg \text{On}(B, C, s') \)

- **Effect Axiom**
 - \(\neg \text{Clear}(x, s) \lor \neg \text{Clear}(y, s) \lor \text{On}(x, y, \text{Result}(\text{Move}(x, y), s)) \)

- **Frame Axioms**
 - \(\neg \text{On}(x, y, s) \lor a = \text{Move}(x, Z(x, y, z, s, a)) \lor \text{On}(x, y, \text{Result}(a, s)) \)
 - \(\neg \text{On}(x, y, s) \lor \neg y = Z(x, y, z, s, a) \lor \text{On}(x, y, \text{Result}(a, s)) \)

- **Unique Action Axioms:** \(\neg \text{Move}(A, B) = \text{Move}(B, z) \), etc.

- **Unique Name Axiom:** disequality for every pair of constants in KB

Skolem function

\[Z(x, y, z, s, a) \]
Resolution Refutation

\neg On(A, B, s') \lor \neg On(B, C, s')

\neg Clear(A, S0)

\neg Clear(B, S0)

\neg On(x, y, s) \lor a = Move(x, Z(x, y, z, s, a)) \lor On(x, y, Result(a, s))

\neg On(B, C, S0) \lor Move(A, B) = Move(B, Z(x, y, z, s, a))

\neg On(B, C, S0)

\neg Clear(x, s) \lor \neg Clear(y, s) \lor On(x, y, Result(Move(x, y, s)))

\neg Clear(A, s) \lor \neg Clear(B, s) \lor \neg On(B, C, Result(Move(A, B, s)))

\neg Clear(B, S0) \lor \neg On(B, C, Result(Move(A, B, S0)))

\neg On(B, C, Result(Move(A, B, S0)))

\neg Move(A, x) = Move(B, z)

On(B, C, S0)
Frame problem partially solved

- This solves the representational part of the frame problem.
- Still have to compute that everything that was true that wasn’t changed is still true.
- Inefficient (as is general theorem proving).
- Solution: Special purpose representations, special purpose algorithms, called planners.
Summary

- Planning
- Situations
- Frame problem