
Informatics 2D ⋅ Agents and Reasoning ⋅ 2019/2020

Lecture 13 ⋅ Resolution-Based Inference

Claudia Chirita

School of Informatics, University of Edinburgh

11th February 2020

Based on slides by: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle



Previously on INF2D

Backward chaining

– if Goal is known (goal directed)
– can query for data

Forward chaining

– if specific Goal is not known, but the system needs to
react to new facts (data driven)

– can make suggestions

What do users expect from the system?
Which direction has the larger branching factor?

2 / 26



Limitations

...due to restriction to definite clauses

In order to apply GMP

• premises of rules contain only non-negated symbols
• the conclusion of any rule is a non-negated symbol
• facts are non-negated atomic sentences

Possible solution: introduce more variables, e.g. 𝑄 ∶= ¬𝑃

What about: “If we cannot prove 𝐴, then ¬𝐴 is true”?
(works only if there is a rule for each variable)

3 / 26



Resolution one more time

• Negate query 𝛼.
• Convert everything to CNF.
• Repeat: Choose clauses and resolve (based on unification).
• If resolution results in empty clause, 𝛼 is proved.
• Return all substitutions (or Fail).

4 / 26



Ground Binary Resolution & Modus Ponens

Ground binary resolution

𝐶 ∨ 𝑃 𝐷 ∨ ¬𝑃

𝐶 ∨ 𝐷

Suppose 𝐶 = False.

𝑃 ¬𝑃 ∨ 𝐷

𝐷

i.e. 𝑃 and 𝑃 → 𝐷 entails 𝐷.

Modus ponens is a special case of binary resolution.

5 / 26



Full Resolution & Generalised Modus Ponens

GMP with 𝑝ᇱ𝜃 = 𝑝𝜃

𝑝ᇱଵ, 𝑝
ᇱ
ଶ, … , 𝑝ᇱ (𝑝ଵ ∧ 𝑝ଶ ∧ … ∧ 𝑝 → 𝑞)

𝑞𝜃

𝑝ᇱଵ, 𝑝
ᇱ
ଶ, … , 𝑝ᇱ (𝑞 ∨ ¬𝑝ଵ ∨ ¬𝑝ଶ ∨ … ∨ ¬𝑝)

𝑞𝜃

Full resolution with 𝜃 mgu of all 𝑃 and 𝑃ᇱ

𝐶 ∨ 𝑃ଵ ∨ … ∨ 𝑃 𝐷 ∨ ¬𝑃ᇱଵ ∨ … ∨ ¬𝑃ᇱ

(𝐶 ∨ 𝐷) 𝜃

6 / 26



Resolution in Implication Form

Ground binary resolution

𝐶 ∨ 𝑃 𝐷 ∨ ¬𝑃

𝐶 ∨ 𝐷

Set 𝐶 = ¬𝐴.

𝐴 → 𝑃 𝑃 → 𝐷

𝐴 → 𝐷

7 / 26



Example ⋅ Memes and Theorems

• Some students like all memes.
𝐹ଵ ∶ ∃𝑥.𝑆(𝑥) ∧ ∀𝑦.𝑀(𝑦) → Likes(𝑥, 𝑦)

• No student likes any theorem.
𝐹ଶ ∶ ∀𝑥, 𝑦.𝑆(𝑥) ∧ 𝑇(𝑦) → ¬Likes(𝑥, 𝑦)

• Show: No meme is a theorem.
𝐹 ∶ ∀𝑥.𝑀(𝑥) → ¬𝑇(𝑥)

8 / 26



Example ⋅ Memes and Theorems

9 / 26



Example ⋅ Memes and Theorems

CNF ⋅ Eliminating implications

𝐹ଵ ∶ ∃𝑥.𝑆(𝑥) ∧ ∀𝑦.𝑀(𝑦) → Likes(𝑥, 𝑦)

∃𝑥.𝑆(𝑥) ∧ ∀𝑦.¬𝑀(𝑦) ∨ Likes(𝑥, 𝑦)

𝐹ଶ ∶ ∀𝑥, 𝑦.𝑆(𝑥) ∧ 𝑇(𝑦) → ¬Likes(𝑥, 𝑦)

∀𝑥, 𝑦.¬𝑆(𝑥) ∨ ¬𝑇(𝑦) ∨ ¬Likes(𝑥, 𝑦)

𝐹 ∶ ∀𝑥.𝑀(𝑥) → ¬𝑇(𝑥)

∀𝑥.¬𝑀(𝑥) ∨ ¬𝑇(𝑥)

10 / 26



Example ⋅ Memes and Theorems

CNF ⋅ Standardising variables apart, skolemising, dropping
universal quantifiers

𝐹ଵ ∶ ∃𝑥.𝑆(𝑥) ∧ ∀𝑦.¬𝑀(𝑦) ∨ Likes(𝑥, 𝑦)

𝑆(𝐺) ∧ (¬𝑀(𝑦) ∨ Likes(𝐺, 𝑦))

𝐹ଶ ∶ ∀𝑥, 𝑦.¬𝑆(𝑥) ∨ ¬𝑇(𝑦) ∨ ¬Likes(𝑥, 𝑦)

¬𝑆(𝑤) ∨ ¬𝑇(𝑧) ∨ ¬Likes(𝑤, 𝑧)

𝐹 ∶ ∀𝑥.¬𝑀(𝑥) ∨ ¬𝑇(𝑥)

¬𝑀(𝑥) ∨ ¬𝑇(𝑥)

11 / 26



Example ⋅ Memes and Theorems

Unification

𝐹ଵ ∶ 𝑆(𝐺) ∧ (¬𝑀(𝑦) ∨ Likes(𝐺, 𝑦))

𝐹ଶ ∶ ¬𝑆(𝑤) ∨ ¬𝑇(𝑧) ∨ ¬Likes(𝑤, 𝑧)

𝑤/𝐺 ∶ ¬𝑆(𝐺) ∨ ¬𝑇(𝑧) ∨ ¬Likes(𝐺, 𝑧)

Negation of proof goal

¬(¬𝑀(𝑥) ∨ ¬𝑇(𝑥)) ≡ 𝑀(𝑥) ∧ 𝑇(𝑥)

12 / 26



Example ⋅ Memes and Theorems
𝑆(𝐺) ∧ (¬𝑀(𝑦) ∨ Likes(𝐺, 𝑦))

¬𝑆(𝐺) ∨ ¬𝑇(𝑧) ∨ ¬Likes(𝐺, 𝑧)

𝑀(𝑥) ∧ 𝑇(𝑥)

Clauses: 𝑆(𝐺), 𝑀(𝑥), 𝑇(𝑥), ¬𝑀(𝑦) ∨ Likes(𝐺, 𝑦),
¬𝑆(𝐺) ∨ ¬𝑇(𝑧) ∨ ¬Likes(𝐺, 𝑧)

𝑆(𝐺) ¬𝑆(𝐺) ∨ ¬𝑇(𝑧) ∨ ¬Likes(𝐺, 𝑧)

¬𝑇(𝑧) ∨ ¬Likes(𝐺, 𝑧)

¬𝑀(𝑦) ∨ Likes(𝐺, 𝑦) ¬𝑇(𝑧) ∨ ¬Likes(𝐺, 𝑧)

¬𝑀(𝑧) ∨ ¬𝑇(𝑧)

Substitute 𝑧/𝑥

¬𝑀(𝑥) ∨ ¬𝑇(𝑥) 𝑀(𝑥)

¬𝑇(𝑥)
and

¬𝑇(𝑥) 𝑇(𝑥)

�

Therefore, ¬𝑀(𝑥) ∨ ¬𝑇(𝑥), i.e. 𝑀(𝑥) → ¬𝑇(𝑥).

13 / 26



Example ⋅ Memes and Theorems 2.0

• Some students like all memes.
𝐹ଵ ∶ ∃𝑥.𝑆(𝑥) ∧ ∀𝑦.𝑀(𝑦) → Likes(𝑥, 𝑦)

• No student likes any theorem.
𝐹ଶ ∶ ∀𝑥.𝑆(𝑥) → ∀𝑦.𝑇(𝑦) → ¬Likes(𝑥, 𝑦)

• Show: No meme is a theorem.
𝐹 ∶ ∀𝑥.𝑀(𝑥) → ¬𝑇(𝑥)

14 / 26



Example ⋅ Memes and Theorems 2.0

CNF ⋅ Eliminating implications

𝐹ଵ ∶ ∃𝑥.𝑆(𝑥) ∧ ∀𝑦.𝑀(𝑦) → Likes(𝑥, 𝑦)

∃𝑥.𝑆(𝑥) ∧ ∀𝑦.¬𝑀(𝑦) ∨ Likes(𝑥, 𝑦)

𝐹ଶ ∶ ∀𝑥.𝑆(𝑥) → ∀𝑦.𝑇(𝑦) → ¬Likes(𝑥, 𝑦)

∀𝑥.¬𝑆(𝑥) ∨ ∀𝑦.¬𝑇(𝑦) ∨ ¬Likes(𝑥, 𝑦)

𝐹 ∶ ∀𝑥.𝑀(𝑥) → ¬𝑇(𝑥)

∀𝑥.¬𝑀(𝑥) ∨ ¬𝑇(𝑥)

15 / 26



Example ⋅ Memes and Theorems 2.0

CNF ⋅ Standardising variables apart, skolemising, dropping
universal quantifiers

𝐹ଵ ∶ ∃𝑥.𝑆(𝑥) ∧ ∀𝑦.¬𝑀(𝑦) ∨ Likes(𝑥, 𝑦)

𝑆(𝐺) ∧ (¬𝑀(𝑦) ∨ Likes(𝐺, 𝑦))

𝐹ଶ ∶ ∀𝑥.¬𝑆(𝑥) ∨ ∀𝑦.¬𝑇(𝑦) ∨ ¬Likes(𝑥, 𝑦)

¬𝑆(𝑤) ∨ (¬𝑇(𝑧) ∨ ¬Likes(𝑤, 𝑧))

𝐹 ∶ ∀𝑥.¬𝑀(𝑥) ∨ ¬𝑇(𝑥)

¬𝑀(𝑥) ∨ ¬𝑇(𝑥)

16 / 26



Resolution ⋅ Soundness and completeness

Resolution is sound and complete.
A set of clauses 𝑆 is unsatisfiable if and only if one can derive
the empty clause (false) from 𝑆.

Soundness: derivability of empty clause implies unsatisfiability.
Can be proved by noticing that every model that satisfies the
premises of resolution satisfies also satisfies its conclusion.

Completeness: every unsatisfiable clause can be refuted by
resolution.

Can be proved using completeness of propositional resolution
and lifting (as in the following slides; the full proof is beyond
the scope of this course).

17 / 26



Resolution ⋅ Completeness proof

18 / 26



Completeness proof ⋅ Step 1

For a set of clauses 𝑆, we call the Herbrand universe of 𝑆 the
set 𝐻ௌ of all ground terms that can be constructed from the
function symbols in 𝑆.

Example
For 𝑆 = {¬𝑃(𝑥, 𝐹(𝑥, 𝐴)) ∨ ¬𝑄(𝑥, 𝐴) ∨ 𝑅(𝑥, 𝐵)} we have
𝐻ௌ = {𝐴, 𝐵, 𝐹(𝐴, 𝐴), 𝐹(𝐴, 𝐵), 𝐹(𝐵, 𝐴), 𝐹(𝐵, 𝐵), 𝐹(𝐴, 𝐹(𝐴, 𝐴)), …}

19 / 26



Completeness proof ⋅ Step 1

For a set of clauses 𝑆 and 𝑃 a set of ground terms,
𝑃(𝑆), the saturation of 𝑆 with respect to 𝑃, is the set of all
ground clauses obtained by applying all possible consistent
substitutions of variables in 𝑆 with ground terms from 𝑃.

The saturation of a set 𝑆 with respect to its Herbrand
universe is called the Herbrand base of 𝑆 and denoted 𝐻ௌ(𝑆).

Example
𝐻ௌ(𝑆) = {¬𝑃(𝐴, 𝐹(𝐴, 𝐴)) ∨ ¬𝑄(𝐴, 𝐴) ∨ 𝑅(𝐴, 𝐵),

¬𝑃(𝐵, 𝐹(𝐵, 𝐴)) ∨ ¬𝑄(𝐵, 𝐴) ∨ 𝑅(𝐵, 𝐵),

¬𝑃(𝐹(𝐴, 𝐴), 𝐹(𝐹(𝐴, 𝐴), 𝐴)) ∨ ¬𝑄(𝐹(𝐴, 𝐴), 𝐴) ∨ 𝑅(𝐹(𝐴, 𝐴), 𝐵),

¬𝑃(𝐹(𝐴, 𝐵), 𝐹(𝐹(𝐴, 𝐵), 𝐴)) ∨¬𝑄(𝐹(𝐴, 𝐵), 𝐴) ∨𝑅(𝐹(𝐴, 𝐵), 𝐵) , … }

20 / 26



Completeness proof ⋅ Step 1

Herbrand’s theorem (1930)

If a set 𝑆 of clauses is unsatisfiable, then there exists a finite
subset of 𝐻ௌ(𝑆) that is also unsatisfiable.

21 / 26



Completeness proof ⋅ Step 2

Let 𝑆ᇱ be that finite unsatisfiable subset of ground sentences.
Running propositional resolution to completion on 𝑆ᇱ will
derive a contradiction.

22 / 26



Completeness proof ⋅ Step 3
Lifting lemma

Let 𝐶ଵ and 𝐶ଶ be two clauses with no shared variables, and
let 𝐶ᇱଵ and 𝐶ᇱଶ ground instances of 𝐶ଵ and 𝐶ଶ.
If 𝐶ᇱ is a resolvent of 𝐶ᇱଵ and 𝐶ᇱଶ, then there exists a clause 𝐶

such that:
𝐶 is a resolvent of 𝐶ଵ and 𝐶ଶ
𝐶ᇱ is a ground instance of 𝐶.

𝐶ଵ, 𝐶ଶ instantiation 𝐶ᇱ
ଵ, 𝐶

ᇱ
ଶ

↓ ↓
భ మ


lifting ᇲ

భ ᇲ
మ

ᇲ

↓ ↓

𝐶 instantiation 𝐶ᇱ

23 / 26



Completeness proof ⋅ Step 3

Example

𝐶ଵ = ¬𝑃(𝑥, 𝐹(𝑥, 𝐴)) ∨ ¬𝑄(𝑥, 𝐴) ∨ 𝑅(𝑥, 𝐵)

𝐶ଶ = ¬𝑁(𝐺(𝑦), 𝑧) ∨ 𝑃(𝐻(𝑦), 𝑧)

𝐶ᇱଵ = ¬𝑃(𝐻(𝐵), 𝐹(𝐻(𝐵), 𝐴)) ∨ ¬𝑄(𝐻(𝐵), 𝐴) ∨ 𝑅(𝐻(𝐵), 𝐵)

𝐶ᇱଶ = ¬𝑁(𝐺(𝐵), 𝐹(𝐻(𝐵), 𝐴)) ∨ 𝑃(𝐻(𝐵), 𝐹(𝐻(𝐵), 𝐴))

𝐶ᇱ = ¬𝑁(𝐺(𝐵), 𝐹(𝐻(𝐵), 𝐴)) ∨ ¬𝑄(𝐻(𝐵), 𝐴) ∨ 𝑅(𝐻(𝐵), 𝐵)

𝐶 = ¬𝑁(𝐺(𝑦), 𝐹(𝐻(𝑦), 𝐴)) ∨ ¬𝑄(𝐻(𝑦), 𝐴) ∨ 𝑅(𝐻(𝑦), 𝐵)

24 / 26



Efficient algorithms for resolution

Heuristics to make resolution more efficient:

Unit preference: prefer clauses with only one symbol.
Pure clauses: a pure clause contains symbol 𝐴 which does
not occur in any other clause. Cannot lead to contradiction.
Tautology: clauses containing 𝐴 and ¬𝐴.
Set of support: identify useful clauses and ignore the rest.
Input resolution: intermediately generated clauses can only
be combined with original input clauses.
Subsumption: if a clause contains another one, use only the
shorter clause. Prune unnecessary facts from the KB.

Including heuristics, resolution is more efficient than DPLL.

25 / 26



Summary

• Limitations of GMP
• Relationship between inference rules
• Completeness of resolution – the lifting lemma
• Efficient algorithms for resolution

26 / 26


