Inf2D 12: Resolution-Based Inference

Cristina Alexandru

School of Informatics, University of Edinburgh

09/02/18

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann
Last time

- Unification: Given α and β, find θ such that $\alpha\theta = \beta\theta$
- Most general unifier (MGU)

- Generalised Modus Ponens

\[
p_1', p_2', \ldots, p_n' (p_1 \land p_2 \land \cdots \land p_n \Rightarrow q) \quad \text{when} \quad p_i'\theta \equiv p_i\theta \quad \forall i
\]
Outline

- Forward chaining
- Backward chaining
- Resolution
Forward chaining algorithm

```
function FOL-FC-Ask(KB, α) returns a substitution or false
    inputs: KB, the knowledge base, a set of first-order definite clauses
            α, the query, an atomic sentence
    local variables: new, the new sentences inferred on each iteration

    repeat until new is empty
        new ← {}
        for each rule in KB do
            (p₁ ∧ ... ∧ pₙ ⇒ q) ← STANDARDIZE-VARIABLES(rule)
            for each θ such that SUBST(θ, p₁ ∧ ... ∧ pₙ) = SUBST(θ, p'₁ ∧ ... ∧ p'ₙ)
                for some p'₁, ..., p'ₙ in KB
                    q' ← SUBST(θ, q)
                    if q' does not unify with some sentence already in KB or new then
                        add q' to new
                        φ ← UNIFY(q', α)
                        if φ is not fail then return φ
                add new to KB
        return false
```
American\((x) \) \& Weapon\((y) \) \& Sells\((x, y, z) \) \& Hostile\((z) \) \\rightarrow Criminal\((x) \)

Owns\((Nono, M_1) \) and Missile\((M_1) \)

Missile\((x) \) \& Owns\((Nono, x) \) \\rightarrow Sells\((West, x, Nono) \)

Missile\((x) \) \\rightarrow Weapon\((x) \)

Enemy\((x, America) \) \\rightarrow Hostile\((x) \)

American\((West) \) and Enemy\((Nono, America) \)
Forward chaining proof

\[
\begin{align*}
\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) & \Rightarrow \text{Criminal}(x) \\
\text{Owns}(\text{Nono}, M_1) \text{ and } \text{Missile}(M_1) & \\
\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) & \Rightarrow \text{Sells}(\text{West}, x, \text{Nono}) \\
\text{Missile}(x) & \Rightarrow \text{Weapon}(x) \\
\text{Enemy}(x, \text{America}) & \Rightarrow \text{Hostile}(x) \\
\text{American}(\text{West}) \text{ and } \text{Enemy}(\text{Nono, America}) &
\end{align*}
\]
Forward chaining proof

\[
\begin{align*}
\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) & \Rightarrow \text{Criminal}(x) \\
\text{Owns}(\text{Nono}, M_1) \text{ and } \text{Missile}(M_1) & \\
\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) & \Rightarrow \text{Sells}(\text{West}, x, \text{Nono}) \\
\text{Missile}(x) & \Rightarrow \text{Weapon}(x) \\
\text{Enemy}(x, \text{America}) & \Rightarrow \text{Hostile}(x) \\
\text{American}(\text{West}) \text{ and } \text{Enemy}(\text{Nono, America}) &
\end{align*}
\]
Forward chaining proof

\[
\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) \Rightarrow \text{Criminal}(x)
\]
\[
\text{Owns}(\text{Nono}, M_1) \text{ and } \text{Missile}(M_1)
\]
\[
\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) \Rightarrow \text{Sells}(\text{West}, x, \text{Nono})
\]
\[
\text{Missile}(x) \Rightarrow \text{Weapon}(x)
\]
\[
\text{Enemy}(x, \text{America}) \Rightarrow \text{Hostile}(x)
\]
\[
\text{American}(\text{West}) \text{ and } \text{Enemy}(\text{Nono, America})
\]
Sound and complete for first-order definite clauses
- Definite clause = exactly one positive literal.

Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations

May not terminate in general if \(\alpha \) is not entailed
This is unavoidable: entailment with definite clauses is semi-decidable
Incremental forward chaining: no need to match a rule on iteration k if a premise wasn’t added on iteration $k - 1$ \Rightarrow match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:
Database indexing allows $O(1)$ retrieval of known facts
 e.g., query $\text{Missile}(x)$ retrieves $\text{Missile}(M1)$

Forward chaining is widely used in deductive databases
Pattern Matching

For each θ such that
$$\text{SUBST}(\theta, p_1 \land \cdots \land p_n) = \text{SUBST}(\theta, p'_1 \land \cdots \land p'_n)$$
for some p'_1, \ldots, p'_n in KB

Finding all possible unifiers can be very expensive

Example

$\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) \Rightarrow \text{Sells}(\text{West}, x, \text{Nono})$

Can find each object owned by Nono in constant time and then check if it is a missile

But what if Nono owns many objects but very few missiles?

Conjunct Ordering: Better (cost-wise) to find all missiles first and then check whether they are owned by Nono

Optimal ordering is NP-hard. Heuristics available: e.g. MRV from CSP if each conjunct is viewed as a constraint on its vars
Every finite domain CSP can be expressed as a single definite clause + ground facts

Colourable is inferred iff the CSP has a solution

CSPs include 3SAT as a special case, hence matching is NP-hard
Backward chaining algorithm

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query, {})

generator FOL-BC-OR(KB, goal, θ) yields a substitution
for each rule (lhs ⇒ rhs) in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs, rhs) ← STANDARDIZE-VARIABLES((lhs, rhs))
for each θ' in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, θ)) do
yield θ'

generator FOL-BC-AND(KB, goals, θ) yields a substitution
if θ = failure then return
else if LENGTH(goals) = 0 then yield θ
else do
first, rest ← FIRST(goals), REST(goals)
for each θ' in FOL-BC-OR(KB, SUBST(θ, first), θ) do
for each θ'' in FOL-BC-AND(KB, rest, θ') do
yield θ''

\[\text{SUBST(COMPOSE}(\theta_1, \theta_2), p) = \text{SUBST}(\theta_2, \text{SUBST}(\theta_1, p)) \]
Backward chaining example

$American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
$Owns(Nono, M_1) \land Missile(M_1)$
$Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
$Missile(x) \Rightarrow Weapon(x)$
$Enemy(x, America) \Rightarrow Hostile(x)$
$American(West) \land Enemy(Nono, America)$

$Criminal(West)$
Backward chaining example

\[\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) \Rightarrow \text{Criminal}(x) \]

\[\text{Owns}(\text{Nono}, M_1) \text{ and } \text{Missile}(M_1) \]

\[\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) \Rightarrow \text{Sells}(\text{West}, x, \text{Nono}) \]

\[\text{Missile}(x) \Rightarrow \text{Weapon}(x) \]

\[\text{Enemy}(x, \text{America}) \Rightarrow \text{Hostile}(x) \]

\[\text{American}(\text{West}) \text{ and } \text{Enemy}(\text{Nono}, \text{America}) \]
Backward chaining example

\[\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) \Rightarrow \text{Criminal}(x) \]
\[\text{Owns}(\text{Nono}, M_1) \land \text{Missile}(M_1) \]
\[\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) \Rightarrow \text{Sells}(\text{West}, x, \text{Nono}) \]
\[\text{Missile}(x) \Rightarrow \text{Weapon}(x) \]
\[\text{Enemy}(x, \text{America}) \Rightarrow \text{Hostile}(x) \]
\[\text{American}(\text{West}) \text{ and } \text{Enemy}(\text{Nono}, \text{America}) \]
Backward chaining example

\[\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) \Rightarrow \text{Criminal}(x)\]
\[\text{Owns}(\text{Nono}, M_1) \text{ and } \text{Missile}(M_1)\]
\[\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) \Rightarrow \text{Sells}(\text{West}, x, \text{Nono})\]
\[\text{Missile}(x) \Rightarrow \text{Weapon}(x)\]
\[\text{Enemy}(x, \text{America}) \Rightarrow \text{Hostile}(x)\]
\[\text{American}(\text{West}) \text{ and } \text{Enemy}(\text{Nono}, \text{America})\]
Backward chaining example

\[\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) \Rightarrow \text{Criminal}(x)\]

\[\text{Owns}(\text{Nono}, M_1) \land \text{Missile}(M_1)\]

\[\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) \Rightarrow \text{Sells}(\text{West}, x, \text{Nono})\]

\[\text{Missile}(x) \Rightarrow \text{Weapon}(x)\]

\[\text{Enemy}(x, \text{America}) \Rightarrow \text{Hostile}(x)\]

\[\text{American}(\text{West}) \land \text{Enemy}(\text{Nono}, \text{America})\]
Backward chaining example

\[
\begin{align*}
\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) & \Rightarrow \text{Criminal}(x) \\
\text{Owns}(\text{Nono}, M_1) \text{ and } \text{Missile}(M_1) & \\
\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) & \Rightarrow \text{Sells}(\text{West}, x, \text{Nono}) \\
\text{Missile}(x) & \Rightarrow \text{Weapon}(x) \\
\text{Enemy}(x, \text{America}) & \Rightarrow \text{Hostile}(x) \\
\text{American}(\text{West}) \text{ and } \text{Enemy}(\text{Nono}, \text{America}) &
\end{align*}
\]
Backward chaining example

\[
\begin{align*}
\text{American}(x) \land \text{Weapon}(y) \land \text{Sells}(x, y, z) \land \text{Hostile}(z) & \Rightarrow \text{Criminal}(x) \\
\text{Owns}(\text{Nono}, M_1) \land \text{Missile}(M_1) & \\
\text{Missile}(x) \land \text{Owns}(\text{Nono}, x) & \Rightarrow \text{Sells}(\text{West}, x, \text{Nono}) \\
\text{Missile}(x) & \Rightarrow \text{Weapon}(x) \\
\text{Enemy}(x, \text{America}) & \Rightarrow \text{Hostile}(x) \\
\text{American}(\text{West}) \land \text{Enemy}(\text{Nono, America}) &
\end{align*}
\]
Properties of backward chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
 - partial fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
 - fix using caching of previous results (extra space)
- Widely used for logic programming
A method for telling whether a propositional formula is satisfiable and for proving that a first-order formula is unsatisfiable.

Yields a complete inference algorithm

If a set of clauses is unsatisfiable, then the resolution closure of those clauses contains the empty clause (propositional logic)
Ground Binary Resolution

\[\frac{C \lor P \quad D \lor \neg P}{C \lor D} \]

Soundness:

\[C \lor P \text{ iff } \neg C \Rightarrow P \]
\[D \lor \neg P \text{ iff } P \Rightarrow D \]

Therefore, \(\neg C \Rightarrow D \),

which is equivalent to \(C \lor D \)

Note: if both \(C \) and \(D \) are empty then resolution deduces the empty clause, i.e. false.
Non-Ground Binary Resolution

\[\frac{C \lor P \quad D \lor \neg P'}{(C \lor D) \theta} \]

where \(\theta \) is the MGU of \(P \) and \(P' \)

- The two clauses are assumed to be standardized apart so that they share no variables.
- **Soundness**: apply \(\theta \) to premises then appeal to ground binary resolution.

\[\frac{C \theta \lor P \theta \quad D \theta \lor \neg P \theta}{C \theta \lor D \theta} \]
Example

\[\neg \text{Rich}(x) \lor \text{Unhappy}(x) \quad \text{Rich}(Ken) \]

\[\frac{}{\text{Unhappy}(Ken)} \]

with \(\theta = \{x/\text{Ken}\} \)
Factoring

\[
\frac{C \lor P_1 \lor \ldots \lor P_m}{(C \lor P_1) \theta}
\]

where \(\theta \) is the MGU of the \(P_i \)

Soundness: by universal instantiation and deletion of duplicates.
\[
C \lor P_1 \lor \ldots \lor P_m \quad D \lor \neg P_1' \lor \ldots \lor \neg P_n' \\
\frac{(C \lor D) \theta}{(C \lor D) \theta}
\]

where \(\theta \) is MGU of all \(P_i \) and \(P'_j \)

- **Soundness**: by combination of factoring and binary resolution.
- To prove \(\alpha \): apply resolution steps to \(CNF(\text{KB} \land \neg \alpha) \)
 - complete for FOL, if full resolution or binary resolution + factoring is used
Conversion to CNF

Example:

Everyone who loves all animals is loved by someone:
\[\forall x. [\forall y. \text{Animal}(y) \Rightarrow \text{Loves}(x, y)] \Rightarrow [\exists y. \text{Loves}(y, x)] \]

1. Eliminate all biconditionals and implications
 \[\forall x. \neg [\forall y. \neg \text{Animal}(y) \lor \text{Loves}(x, y)] \lor [\exists y. \text{Loves}(y, x)] \]

2. Move \(\neg \) inwards, use: \(\neg \forall x. p \equiv \exists x. \neg p \), \(\neg \exists x. p \equiv \forall x. \neg p \), etc.
 \[\forall x. [\exists y. \neg (\neg \text{Animal}(y) \lor \text{Loves}(x, y))] \lor [\exists y. \text{Loves}(y, x)] \]
 \[\forall x. [\exists y. \neg \text{Animal}(y) \land \neg \text{Loves}(x, y)] \lor [\exists y. \text{Loves}(y, x)] \]
 \[\forall x. [\exists y. \text{Animal}(y) \land \neg \text{Loves}(x, y)] \lor [\exists y. \text{Loves}(y, x)] \]
1. **Standardize variables apart:** each quantifier should use a different one
 \[\forall x. [\exists y. Animal(y) \land \neg Loves(x, y)] \lor [\exists z. Loves(z, x)] \]

2. **Skolemize:** a more general form of existential instantiation
 Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables
 \[\forall x. [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x) \]

3. **Drop universal quantifiers:**
 \[[Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(x), x) \]

4. **Distribute \lor over \land:**
 \[[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)] \]

1) No enclosing universal quantifier? Just replace with Skolem constant, i.e. a function with no argument.
'West' Clauses

\neg American(x) \lor \neg Weapon(y) \lor \neg Sells(x, y, z) \lor
\neg Hostile(z) \lor \text{Criminal}(x)

\text{Owns}(\text{Nono}, M_1) \text{ and } \text{Missile}(M_1)

\neg \text{Missile}(x) \lor \neg \text{Owns}(\text{Nono}, x) \lor \text{Sells}(\text{West}, x, \text{Nono})

\neg \text{Missile}(x) \lor \text{Weapon}(x)

\neg \text{Enemy}(x, \text{America}) \lor \text{Hostile}(x)

\text{American}(\text{West}) \text{ and } \text{Enemy}(\text{Nono}, \text{America})
Resolution proof: definite clauses

\[\neg \text{American}(x) \lor \neg \text{Weapon}(y) \lor \neg \text{Sells}(x,y,z) \lor \neg \text{Hostile}(z) \lor \text{Criminal}(x) \]

\[\neg \text{Criminal}(\text{West}) \]

\[\neg \text{American}(\text{West}) \lor \neg \text{Weapon}(y) \lor \neg \text{Sells}(\text{West},y,z) \lor \neg \text{Hostile}(z) \]

\[\text{American}(\text{West}) \]

\[\neg \text{Missile}(x) \lor \text{Weapon}(x) \]

\[\neg \text{Weapon}(y) \lor \neg \text{Sells}(\text{West},y,z) \lor \neg \text{Hostile}(z) \]

\[\text{Missile}(\text{M1}) \]

\[\neg \text{Missile}(y) \lor \neg \text{Sells}(\text{West},y,z) \lor \neg \text{Hostile}(z) \]

\[\neg \text{Missile}(x) \lor \neg \text{Owns}(\text{Nono},x) \lor \text{Sells}(\text{West},x,\text{Nono}) \]

\[\neg \text{Sells}(\text{West},\text{M1},z) \lor \neg \text{Hostile}(z) \]

\[\text{Missile}(\text{M1}) \]

\[\neg \text{Missile}(\text{M1}) \lor \neg \text{Owns}(\text{Nono},\text{M1}) \lor \neg \text{Hostile}(\text{Nono}) \]

\[\text{Missile}(\text{M1}) \]

\[\neg \text{Owns}(\text{Nono},\text{M1}) \lor \neg \text{Hostile}(\text{Nono}) \]

\[\text{Owns}(\text{Nono},\text{M1}) \]

\[\neg \text{Owns}(\text{Nono},\text{M1}) \lor \neg \text{Hostile}(\text{Nono}) \]

\[\neg \text{Enemy}(x,\text{America}) \lor \text{Hostile}(x) \]

\[\text{Enemy}(\text{Nono, America}) \]

\[\neg \text{Hostile}(\text{Nono}) \]

\[\text{Enemy}(\text{Nono, America}) \]
Summary

- Forward chaining
- Backward chaining
- Resolution