
Informatics 2D ⋅ Agents and Reasoning ⋅ 2019/2020

Lecture 8 ⋅ Smart Searching
Using Constraints

Claudia Chirita

School of Informatics, University of Edinburgh

30thJanuary 2020

Based on slides by: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle



Outline

• Constraint Satisfaction Problems (CSP)
• Backtracking search for CSP
• Efficiency matters

2 / 33



Constraint Satisfaction Problems (CSP)
Standard search problem
• A state is a black box – any data structure that supports

a successor function, a heuristic function and a goal test.

CSP
• A state is defined by a set of variables, each of which

has a value.
• Solution: when each variable has a value that satisfies

all its constraints.
• Allows useful general-purpose algorithms with more

power than standard search algorithms.
• Main idea: eliminate large portions of the search space

by identifying variable/value combinations that violate
the constraints.

3 / 33



Constraint Satisfaction Problems (CSP)

A CSP consists of:
• a set 𝑋 = {𝑋ଵ, … , 𝑋} of variables
• a set 𝐷 = {𝐷ଵ, … , 𝐷} of domains; each domain 𝐷 is a

set of possible values for variable 𝑋

• a set 𝐶 of constraints that specify accepted
combinations of values.
A constraint 𝑐 ∈ 𝐶 consists of a scope – tuple of
variables involved in the constraint – and a relation that
defines the values that the variables can take.

4 / 33



Example ⋅ Map-Colouring

Variables: {WA,NT,Q,NSW,V, SA,T}

Domains: 𝐷 = {red, black, blue}

Constraints: adjacent regions must have different colours
⋅ e.g. WA ≠ NT or
⋅ (WA,NT) ∈ {(red, black), (red, blue), (black, red),

(black, blue), (blue, red), (blue, black)}

5 / 33



Example ⋅ Map-Colouring

Solutions are complete and consistent assignments.
⋅ e.g. WA ↦ red, NT ↦ black, Q ↦ red, NSW ↦ black, V ↦ red,

SA ↦ blue, T ↦ black.

6 / 33



Constraint graph
Binary CSP
• Each constraint relates two variables.
• Constraint graph:
⋅ nodes are variables
⋅ arcs (edges) represent constraints

7 / 33



Varieties of CSP
Discrete variables
• finite domains:
⋅ 𝑛 variables, domain size 𝑑, 𝑂(𝑑) complete assignments
⋅ e.g. Boolean CSPs, including Boolean satisfiability
(NP-complete)

• infinite domains:
⋅ integers, strings, etc.
⋅ e.g. job scheduling

– variables are start/end days for each job
– we need a constraint language to express

StartJob
ଵ
+ 5 ≤ StartJob

ଷ

Continuous variables
• e.g. start/end times for Hubble Space Telescope observations
• linear constraints solvable in polynomial time by linear

programming

8 / 33



Varieties of constraints

Unary constraints involve a single variable.
• e.g. SA ≠ black

Binary constraints involve pairs of variables.
• e.g. SA ≠ WA

Higher-order constraints involve 3 or more variables.
• e.g. crypt-arithmetic column constraints

Global constraints involve an arbitrary number of variables.

9 / 33



Example ⋅ Crypt-arithmetic

Variables: {𝐹, 𝑇, 𝑈,𝑊, 𝑅, 𝑂, 𝑋ଵ, 𝑋ଶ, 𝑋ଷ}

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints: Alldiff(𝐹, 𝑇, 𝑈,𝑊, 𝑅, 𝑂) ⟵ global constraint
𝑂 + 𝑂 = 𝑅 + 10 ⋅ 𝑋ଵ
𝑋ଵ +𝑊 +𝑊 = 𝑈 + 10 ⋅ 𝑋ଶ
𝑋ଶ + 𝑇 + 𝑇 = 𝑂 + 10 ⋅ 𝑋ଷ
𝑋ଷ = 𝐹, 𝑇 ≠ 0, 𝐹 ≠ 0

10 / 33



Real-world CSP

Assignment problems
• e.g. who teaches what class

Timetabling problems
• e.g. which class is offered when and where

Transportation scheduling

Factory scheduling

Many real-world problems involve real-valued variables.

11 / 33



Standard search formulation (incremental)

Let’s start with the straightforward approach, then adapt it.

• States are defined by the values assigned so far.

Initial state: the empty assignment {}
Successor function: assign a value to an unassigned variable
that does not conflict with the current assignment

→ fail if no legal assignments
Goal test: the current assignment is complete

• This is the same for all CSPs.
• For CSPs with with 𝑛 variables, any solution appears at

depth 𝑛 ⇒ use depth-first search.

12 / 33



Backtracking search

• Variable assignments are commutative.
⋅ e.g. [WA ↦ red then NT ↦ black]

is the same as
[NT ↦ black then WA ↦ red]

• We only need to consider assignments to a single variable at
each node. Thus, 𝑏 = 𝑑, and there are 𝑑 leaves.

• Depth-first search for CSPs with single-variable assignments
is called backtracking search.

• Backtracking search: the basic uninformed algorithm for CSP.
• Can solve the 𝑛-queens problem for 𝑛 ≈ 25.

13 / 33



Backtracking search

14 / 33



Backtracking example

15 / 33



Backtracking example

16 / 33



Backtracking example

17 / 33



Backtracking example

18 / 33



Improving backtracking efficiency

General-purpose methods can give huge gains in speed.

Which variable should be assigned next?
• SELECT-UNASSIGNED-VARIABLE

Then, in what order should its values be tried?
• ORDER-DOMAIN-VALUES

What inferences should be performed at each search step?
• INFERENCE

Can we detect inevitable failure early?

19 / 33



Most constrained variable

var ← SELECT-UNASSIGNED-VARIABLE(csp)

Most constrained variable heuristic
⋅ choose the variable with the fewest legal values
⋅ a.k.a. minimum-remaining-values (MRV) heuristic

20 / 33



Most constraining variable

Tie-breaker among most constrained variables.

Most constraining variable heuristic
⋅ choose the variable with the most constraints on

remaining variables, thus reducing branching
⋅ a.k.a. degree heuristic

21 / 33



Least constraining value

ORDER-DOMAIN-VALUES

Given a variable, choose the least constraining value
⋅ the one that rules out the fewest values in the remaining

variables

Combining these heuristics: 𝑛-queens feasible for 𝑛 ≈ 1000.

22 / 33



Inference ⋅ Forward checking

Idea
Keep track of remaining legal values for unassigned variables.
Terminate the search when a variable has no more legal
values.

23 / 33



Inference ⋅ Forward checking

Idea
Keep track of remaining legal values for unassigned variables.
Terminate the search when a variable has no more legal
values.

24 / 33



Inference ⋅ Forward checking

Idea
Keep track of remaining legal values for unassigned variables.
Terminate the search when a variable has no more legal
values.

25 / 33



Inference ⋅ Forward checking

Idea
Keep track of remaining legal values for unassigned variables.
Terminate the search when a variable has no more legal
values.

26 / 33



Constraint propagation
Forward checking propagates information from assigned to
unassigned variables, but doesn’t provide early detection for
all failures.

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally.

27 / 33



Arc consistency
Simplest form of propagation makes each arc consistent.

𝑋 → 𝑌 is consistent iff
for every value 𝑥 in the domain of 𝑋
there is some allowed value 𝑦 in the domain of 𝑌

28 / 33



Arc consistency
Simplest form of propagation makes each arc consistent.

𝑋 → 𝑌 is consistent iff
for every value 𝑥 in the domain of 𝑋
there is some allowed value 𝑦 in the domain of 𝑌

29 / 33



Arc consistency
Simplest form of propagation makes each arc consistent.

𝑋 → 𝑌 is consistent iff
for every value 𝑥 in the domain of 𝑋
there is some allowed value 𝑦 in the domain of 𝑌

If 𝑋 loses a value, its neighbours need to be rechecked.

30 / 33



Arc consistency
Simplest form of propagation makes each arc consistent.

𝑋 → 𝑌 is consistent iff
for every value 𝑥 in the domain of 𝑋
there is some allowed value 𝑦 in the domain of 𝑌

If 𝑋 loses a value, its neighbours need to be rechecked.
Detects failure earlier than forward checking.
Can be run as a preprocessor or after each assignment.

31 / 33



Arc consistency algorithm ⋅ AC-3

𝑑 – maximum size of the domains
𝑐 – number of binary constraints

Time complexity: 𝑂(𝑐𝑑ଷ) Space complexity: 𝑂(𝑐)
32 / 33



Summary

In CSPs:
• States defined by values of a fixed set of variables.
• Goal test defined by constraints on variable values.
• Backtracking: depth-first search with one variable

assigned per node.
• Variable-ordering and value-selection heuristics help.
• Forward checking prevents assignments that are certain

to lead to later failure.
• Constraint propagation does additional work to limit

values and detect inconsistencies.

33 / 33


