Inf2D 08: Smart Searching Using Constraints

Stefano Albrecht

School of Informatics, University of Edinburgh

01/02/18

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann
Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Making this more efficient
Constraint satisfaction problems (CSPs)

- **Standard search problem:**
 - **state** is a ‘black box’ – any data structure that supports successor function, heuristic function and goal test.

- **CSP:**
 - **state** is defined by variables X_i with values from domain D_i ($i = 1, \ldots, n$)
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables.
 - Simple example of a *formal representation language*.
 - Allows useful *general-purpose* algorithms with more power than standard search algorithms.
Example: Map-Colouring

- Variables WA, NT, Q, NSW, V, SA, T
- Domains $D_i = \text{red, green, blue}$
- Constraints: adjacent regions must have different colours,
 - e.g. $WA \neq NT$,
 - or (WA, NT) in

\[\{(\text{red, green}), (\text{red, blue}), (\text{green, red}), (\text{green, blue}), (\text{blue, red}), (\text{blue, green})\}\]
Example: Map-Colouring

- **Solutions** are complete and consistent assignments,
 - e.g. WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green.
Constraint graph

- **Binary CSP**: each constraint relates two variables.
- **Constraint graph**:
 - nodes are variables,
 - arcs (edges) represent constraints relating two nodes each.

![Constraint Graph Diagram]
Varieties of CSPs

- **Discrete variables:**
 - finite domains:
 - n variables, domain size $d \rightarrow O(d^n)$, complete assignments.
 - e.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete).
 - infinite domains:
 - integers, strings, etc.
 - e.g. job scheduling, variables are start/end days for each job.
 - need a constraint language, e.g. \(\text{StartJob}_1 + 5 \leq \text{StartJob}_3 \)

- **Continuous variables:**
 - e.g. start/end times for Hubble Space Telescope observations.
 - linear constraints solvable in polynomial time by linear programming.
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g. $SA \neq \text{green}$.

- **Binary** constraints involve pairs of variables,
 - e.g. $SA \neq WA$.

- **Higher-order** constraints involve 3 or more variables,
 - e.g. crypt-arithmetic column constraints.

- **Global** constraints involve an arbitrary number of variables
Example: Crypt-arithmetic

Variables: $F, T, U, W, R, O, X_1, X_2, X_3$

Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints: $Alldiff(F, T, U, W, R, O)$

- $O + O = R + 10 \cdot X_1$
- $X_1 + W + W = U + 10 \cdot X_2$
- $X_2 + T + T = O + 10 \cdot X_3$
- $X_3 = F, \ T \neq 0, \ F \neq 0$.

Stefano Albrecht

Inf2D 08: Smart Searching Using Constraints
Real-world CSPs

- Assignment problems
 - e.g. who teaches what class
- Timetabling problems
 - e.g. which class is offered when and where
- Transportation scheduling
- Factory scheduling

Many real-world problems involve real-valued variables.
Let’s start with the straightforward approach, then adapt it. States are defined by the values assigned so far.

- **Initial state:** the empty assignment `{}.
- **Successor function:** assign a value to an unassigned variable that does not conflict with current assignment → fail if no legal assignments.
- **Goal test:** the current assignment is complete.

1. This is the same for all CSPs.
2. Every solution appears at depth n with n variables → use depth-first search.
Variable assignments are **commutative**, e.g. \([\text{WA} = \text{red then NT} = \text{green}]\) same as \([\text{NT} = \text{green then WA} = \text{red}]\).

Only need to consider assignments to a single variable at each node \(\rightarrow b = d\) and there are \(d^n\) leaves.

Depth-first search for CSPs with single-variable assignments is called **backtracking** search.

Backtracking search is the basic uninformed algorithm for CSPs.

Can solve \(n\)-queens for \(n \approx 25\).
function BACKTRACKING-SEARCH(csp) returns a solution, or failure
 return BACKTRACK({}, csp)

function BACKTRACK(assignment, csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment then
 add \{var = value\} to assignment
 inferences ← INERENCE(csp, var, value)
 if inferences ≠ failure then
 add inferences to assignment
 result ← BACKTRACK(assignment, csp)
 if result ≠ failure then
 return result
 remove \{var = value\} and inferences from assignment
 return failure

Optional: Can be used to impose arc-consistency (more on this later)
Backtracking example
Backtracking example
Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

- Which **variable** should be assigned next?
 - **SELECT-UNASSIGNED-VARIABLE**
- Then, in what order should its **values** be tried?
 - **ORDER-DOMAIN-VALUES**
- What inferences should be performed at each step of the search?
 - **INFERENC**
- Can we detect inevitable failure early?
Most constrained variable

\[\text{var} \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(csp) \]

- Most constrained variable: choose the variable with the fewest legal values.

- a.k.a. minimum.remaining.values (MRV) heuristic.
Most constraining variable

- Tie-breaker among most constrained variables.
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables – thus reducing branching.
- a.k.a. degree heuristic
Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables.

- Combining these heuristics makes 1000 queens feasible.
Inference: Forward checking

Idea:

- Keep track of remaining legal values for unassigned variables.
- Terminate search when any variable has no legal values.

![Map of Australia with states represented by colors]
Forward checking

Idea:

- Keep track of remaining legal values for unassigned variables.
- Terminate search when any variable has no legal values.

[Diagram showing a map of Australia with states shaded in red and green]

WA NT Q NSW V SA T
Forward checking

Idea:

- Keep track of remaining legal values for unassigned variables.
- Terminate search when any variable has no legal values.
Forward checking

Idea:

- Keep track of remaining legal values for unassigned variables.
- Terminate search when any variable has no legal values.
Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally.
Simplest form of propagation makes each arc consistent.

$X \rightarrow Y$ is consistent iff

for every value x of in the domain of X there is some allowed y in the domain of Y.
Arc consistency

- Simplest form of propagation makes each arc consistent.
- $X \rightarrow Y$ is consistent iff
 - for every value x of in the domain of X there is some allowed y in the domain of Y.

[Diagram showing arc consistency]
Arc consistency

- Simplest form of propagation makes each arc consistent.
- \(X \rightarrow Y \) is consistent iff
 - for every value \(x \) of in the domain of \(X \) there is some allowed \(y \) in the domain of \(Y \).

- If \(X \) loses a value, neighbours of \(X \) need to be rechecked.
Arc consistency

- Simplest form of propagation makes each arc consistent.
- $X \rightarrow Y$ is consistent iff
 - for every value x of in the domain of X there is some allowed y in the domain of Y.

- If X loses a value, neighbours of X need to be rechecked.
- Detects failure earlier than forward checking.
- Can be run as a preprocessor or after each assignment.
Arc consistency algorithm AC-3

function AC-3(csp) **returns** false if an inconsistency is found and true otherwise

inputs: csp, a binary CSP with components (X, D, C)

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 (Xᵢ, Xⱼ) ← REMOVE-FIRST(queue)
 if REVISE(csp, Xᵢ, Xⱼ) then
 if size of Dᵢ = 0 then return false
 for each Xₖ in Xᵢ.NEIGHBORS - {Xⱼ} do
 add (Xₖ, Xᵢ) to queue
 return true

function REVISE(csp, Xᵢ, Xⱼ) **returns** true iff we revise the domain of Xᵢ

revised ← false
for each x in Dᵢ do
 if no value y in Dⱼ allows (x, y) to satisfy the constraint between Xᵢ and Xⱼ then
 delete x from Dᵢ
 revised ← true
return revised

- Time complexity: $O(cd^3)$, where d is maximum size of each domain and c is the number of binary constraints (arcs).
- Space complexity $O(c)$
CSPs are a special kind of problem:

- States defined by values of a fixed set of variables
- Goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g. arc consistency) does additional work to constrain values and detect inconsistencies