Two families of efficient algorithms for propositional inference:

- Complete backtracking search algorithms
 - DPLL algorithm (Davis, Putnam, Logemann, Loveland)
- Incomplete local search algorithms
 - WalkSAT algorithm
DPLL and WalkSAT manipulate formulae in **conjunctive normal form (CNF)**.

Sentence is formula whose satisfiability is to be determined.

- conjunction of clauses.

Clause is **disjunction** of literals

Literal is proposition or **negated proposition**

Example: \((A, \neg B), (B, \neg C)\) representing \((A \lor \neg B) \land (B \lor \neg C)\)
Conversion to CNF

\[B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \]

1. **Eliminate \(\iff \) replacing \(\alpha \iff \beta \) by \((\alpha \implies \beta) \land (\beta \implies \alpha)\)

 \[(B_{1,1} \implies (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \implies B_{1,1})\]

2. **Eliminate \(\implies \), replacing \(\alpha \implies \beta \) by \(\neg \alpha \lor \beta \)

 \[(\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. **Move \(\neg \) inwards using de Morgan’s rules**

 \[(\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})\]

 possibly also eliminating double-negation: replacing \(\neg(\neg \alpha) \) by \(\alpha \)

4. **Apply distributivity law \((\lor \text{ over } \land)\) and flatten:**

 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination
2. Pure symbol heuristic
3. Unit clause heuristic
Early termination

- A clause is true if one of its literals is true,
 - e.g. if A is true then $(A \lor \neg B)$ is true.

- A sentence is false if any of its clauses is false,
 - e.g. if A is false and B is true then $(A \lor \neg B)$ is false, so sentence containing it is false.
Pure symbol heuristic

- **Pure symbol**: always appears with the same “sign” or polarity in all clauses.
 - e.g., in the three clauses \((A \lor \neg B), (\neg B \lor \neg C), (C \lor A)\)
 - \(A\) and \(B\) are pure, \(C\) is impure.

- Make **literal** containing a pure symbol true.
 - e.g. (for satisfiability) Let \(A\) and \(\neg B\) both be true
Unit clause: only one literal in the clause, e.g. \((A)\)

- The only literal in a unit clause must be true.
 - e.g. \(A\) must be true.
- Also includes clauses where all but one literal is false,
 - e.g. \((A, B, C)\) where \(B\) and \(C\) are false since it is equivalent to \((A, \text{false}, \text{false})\) i.e. \((A)\).
The DPLL algorithm

function DPLL-Satisfiable?(s) **returns** true or false

inputs: s, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of s
symbols ← a list of the proposition symbols in s

return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) **returns** true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false

P, value ← FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols−P, [P = value | model])

P, value ← FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols−P, [P = value | model])

P ← FIRST(symbols); rest ← REST(symbols)
return DPLL(clauses, rest, [P = true | model]) or

DPLL(clauses, rest, [P = false | model])
Tautology Deletion (Optional)

- **Tautology**: both a proposition and its negation in a clause.
 - e.g. \((A, B, \neg A)\)

- Clause bound to be true.
 - e.g. whether \(A\) is true or false.
 - Therefore, can be deleted.
Apply DPLL heuristics to the following sentence:

\((S_{2,1}) , (\neg S_{1,1}) , (\neg S_{1,2}) ,
(\neg S_{2,1}, W_{2,2}) , (\neg S_{1,1}, W_{2,2}) , (\neg S_{1,2}, W_{2,2}) ,
(\neg W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2}).\)

Use case splits if model not found by these heuristics.
Symbols: $S_{1,1}, S_{1,2}, S_{2,1}, W_{2,2}$

- Pure symbol heuristic:
 - No literal is pure.

- Unit clause heuristic:
 - $S_{2,1}$ is true; $S_{1,1}$ and $S_{1,2}$ are false.

- Early termination heuristic:
 - $(\neg S_{1,1}, W_{2,2}), (\neg S_{1,2}, W_{2,2})$ are both true.
 - $(\neg W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2})$ is true.

- Unit clause heuristic:
 - $\neg S_{2,1}$ is false, so $(\neg S_{2,1}, W_{2,2})$ becomes unit clause.
 - $W_{2,2}$ must be true.
The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness
The WalkSAT algorithm

function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure

inputs: clauses, a set of clauses in propositional logic
 p, the probability of choosing to do a “random walk” move
 max-flips, number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses

for i = 1 to max-flips do
 if model satisfies clauses then return model
 clause ← a randomly selected clause from clauses that is false in model
 with probability p flip the value in model of a randomly selected symbol
 from clause
 else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Algorithm checks for satisfiability by randomly flipping the values of variables
Hard satisfiability problems

- Consider random 3-CNF sentences: 3SAT problem
- Example:

\[(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)\]

\[m: \text{number of clauses}\]
\[n: \text{number of symbols}\]

- Hard problems seem to cluster near \[m/n = 4.3\] (critical point)
Hard satisfiability problems
Median runtime for 100 satisfiable random 3-CNF sentences, \(n = 50 \)
Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

\[\neg P_{1,1} \]
\[\neg W_{1,1} \]
\[B_{x,y} \Leftrightarrow (P_{x,y+1} \lor P_{x,y-1} \lor P_{x+1,y} \lor P_{x-1,y}) \]
\[S_{x,y} \Leftrightarrow (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y}) \]
\[W_{1,1} \lor W_{1,2} \lor \cdots \lor W_{4,4} \]
\[\neg W_{1,1} \lor \neg W_{1,2} \]
\[\neg W_{1,1} \lor \neg W_{1,3} \]
\[\cdots \]
\[\Rightarrow 64 \text{ distinct proposition symbols, 155 sentences} \]
function Hybrid-Wumpus-Agent (percept) returns an action

inputs: percept, a list, [stench, breeze, glitter, bump, scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”

\(t \), a counter, initially 0, indicating time

plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))

TELL the KB the temporal “physics” sentences for time \(t \)

\(\text{safe} \leftarrow \{ [x,y] : \text{ASK}(KB, OK_{x,y}^t) = \text{true} \} \)

if \(\text{ASK}(KB, Glitter^t) = \text{true} \) then

\(\text{plan} \leftarrow [\text{Grab}] + \text{PLAN-ROUTE}(current, \{[1,1]\}, \text{safe}) + [\text{Climb}] \)

if \(\text{plan} \) is empty then

\(\text{unvisited} \leftarrow \{ [x,y] : \text{ASK}(KB, L_{x,y}^{t'}) = \text{false} \text{ for all } t' \leq t \} \)

\(\text{plan} \leftarrow \text{PLAN-ROUTE}(current, \text{unvisited} \cap \text{safe}, \text{safe}) \)

if \(\text{plan} \) is empty and \(\text{ASK}(KB, HaveArrow^t) = \text{true} \) then

\(\text{possible_wumpus} \leftarrow \{ [x,y] : \text{ASK}(KB, \neg W_{x,y}^t) = \text{false} \} \)

\(\text{plan} \leftarrow \text{PLAN-SHOT}(current, \text{possible_wumpus}, \text{safe}) \)

if \(\text{plan} \) is empty then // no choice but to take a risk

\(\text{not_unsafe} \leftarrow \{ [x,y] : \text{ASK}(KB, \neg OK_{x,y}^t) = \text{false} \} \)

\(\text{plan} \leftarrow \text{PLAN-ROUTE}(current, \text{unvisited} \cap \text{not_unsafe}, \text{safe}) \)

if \(\text{plan} \) is empty then

\(\text{plan} \leftarrow \text{PLAN-ROUTE}(current, \{[1,1]\}, \text{safe}) + [\text{Climb}] \)

action \leftarrow \text{POP}(\text{plan})

TELL(KB, MAKE-ACTION-SENTENCE(action, t))

\(t \leftarrow t + 1 \)

return action
function PLAN-ROUTE(current, goals, allowed) returns an action sequence
inputs: current, the agent’s current position
 goals, a set of squares; try to plan a route to one of them
 allowed, a set of squares that can form part of the route

problem ← ROUTE-PROBLEM(current, goals, allowed)
return A*-GRAPH-SEARCH(problem)
We need more!

- Effect axioms:
 \[L_{1,1}^0 \land \text{FacingEast}^0 \land \text{Forward}^0 \Rightarrow L_{2,1}^1 \land \neg L_{11}^1 \]

- We need extra axioms about the world.

- Frame problem
 - Frame axioms:
 \[
 \text{Forward}^t \Rightarrow (\text{HaveArrow}^t \iff \text{HaveArrow}^{t+1}) \\
 \text{Forward}^t \Rightarrow (\text{WumpusAlive}^t \iff \text{WumpusAlive}^{t+1})
 \]
 - Successor-state axioms:
 \[
 \text{HaveArrow}^{t+1} \iff (\text{HaveArrow}^t \land \neg \text{Shoot}^t)
 \]
KB contains “physics” sentences for every single square

For every time t and every location $[x, y],

$$L^t_{x,y} \land \text{FacingRight}^t \land \text{Forward}^t \Rightarrow L^{t+1}_{x+1,y}$$

Rapid proliferation of clauses
Logical agents apply inference to a knowledge base to derive new information and make decisions.

Two algorithms: DPLL & WalkSAT

Hard satisfiability problems

Applications to Wumpus World.

Propositional logic lacks expressive power