Inf2D 07: Effective Propositional
Inference

Valerio Restocchi

School of Informatics, University of Edinburgh

28/01/20

informatics

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle

Outline

Two families of efficient algorithms for propositional inference:

— Complete backtracking search algorithms

» DPLL algorithm (Davis, Putnam, Logemann, Loveland)
— Incomplete local search algorithms

» WalkSAT algorithm

Clausal Form: CNF

— DPLL and WalkSAT manipulate formulae in conjunctive
normal form (CNF).

— Sentence is formula whose satisfiability is to be
determined.

» conjunction of clauses.
— Clause is disjunction of literals
— Literal is proposition or negated proposition

— Example: (A,—B),(B,—C) representing
(AV-=B)A(BV-C)

Conversion to CNF

Bi1 < (P12 V Pay)
— Eliminate < replacing a < by (a = B) A (8 = «)
(Big = (Pi2V P21)) A((Pr2V P21) = Bra)
— Eliminate =, replacing o = 3 by —a V 3
(mB11V (PioV Pr1)) A(—=(Pi2V Pai1) V Biy)
— Move — inwards using de Morgan's rules
(=B11 V(P12 V Po1)) A((mPip A=Pa1) V Biy)

possibly also eliminating double-negation: replacing — (—a) by «

— Apply distributivity law (V over A) and flatten:
(=B11V P12V Py1) A (=P12V Bia) A(—=P21V Bya)

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF)
is satisfiable.
Improvements over truth table enumeration:

— Early termination
— Pure symbol heuristic

— Unit clause heuristic

Early termination

— A clause is true if one of its literals is true,
» e.g. if Ais true then (AV =B) is true.
— A sentence is false if any of its clauses is false,

» eg. if Ais false and B is true then (AV —B) is false, so
sentence containing it is false.

Pure symbol heuristic

— Pure symbol: always appears with the same “sign” or
polarity in all clauses.

» e.g., in the three clauses (AV =B), (-BV =C), (C V A)
A and B are pure, C is impure.

— Make literal containing a pure symbol true.

» e.g. (for satisfiability) Let A and —B both be true

Unit clause heuristic

Unit clause: only one literal in the clause, e.g. (A)
— The only literal in a unit clause must be true.
> e.g. A must be true.
— Also includes clauses where all but one literal is false,

» eg. (A B,C) where B and C are false since it is
equivalent to (A, false, false) i.e. (A).

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses « the set of clauses in the CNF representation of s
symbols < a list of the proposition symbols in s
return DPLL(clauses, symbols, ||)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return frue
if some clause in clauses is false in model then return false
P, value + FIND-PURE-SyYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols-P,|P = value|model|)
P, value + FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols-P,|P = value|model|)
P+ First(symbols); rest+ REST(symbols)
return DPLL(clauses, rest, [P = true|model]) or
DPLL(clauses, rest, |P = false|model|)

Tautology Deletion (Optional)

— Tautology: both a proposition and its negation in a
clause.

> eg. (A B,—A)
— Clause bound to be true.

» e.g. whether A is true or false.
» Therefore, can be deleted.

10

Mid-Lecture Exercise

— Apply DPLL heuristics to the following sentence:

($21), (0S11), (5512),
(ﬁSZ,la W2“2)-, ("51,11 W2,2)1 (“51,2: W2,2))
(_‘ W2.27 52,17 51,11 51,2)-

— Use case splits if model not found by these heuristics.

11

Solution

Symbols: S 1, 51,2,- So1, Was

— Pure symbol heuristic:

. . (52 1) 5 (_'51.1)) (_‘51.2) 3
» No literal is pure.
o e e (=S50, Way) |
— Unit clause heuristic: (=S11, Whs), (=512, Why),
» Sy is true; 511 (=Wa2, S21, 11, S1.2)-

and S5 are false.
— Early termination heuristic:

4 (—\51’1, W272), (—\51’2, W272) are both true.
> (—| W272, 52,1, 5171, 51,2) is true.

— Unit clause heuristic:

» 5,1 is false, so (=521, Wh2) becomes unit clause.
» W5 must be true.

12

The WalkSAT algorithm

— Incomplete, local search algorithm

— Evaluation function: The min-conflict heuristic of
minimizing the number of unsatisfied clauses

— Balance between greediness and randomness

13

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model+ a random assignment of true/false to the symbols in clauses
for i = 1 to maa-flips do

if model satisfies clauses then return model

clause « a randomly selected clause from clauses that is false in model

with probability p flip the value in model of a randomly selected symbol

from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Algorithm checks for satisfiability by randomly flipping the
values of variables

14

Hard satisfiability problems

— Consider random 3-CNF sentences: 3SAT problem

— Example:
(=DV=BVC)A(BV-AV-C)A(~CV-BVE)A(EV-DVB)A(BVEV~-C)

m: number of clauses
n: number of symbols

— Hard problems seem to cluster near m/n = 4.3
(critical point)

15

Hard satisfiability problems

1 F T s m— =
)
08 | Ii
3 \
S 06|
ﬁ_ x
2 04}
= I
02 | ‘l\
0 - i | | | y e e

Clause/symbol ratio m/n

16

Hard satisfiability problems

2000 T T T

1800 DPLL —+
WalkSAT -

Runtime
g

Median runtime for 100 satisfiable random 3-CNF sentences,
n=>50

Inference-based agents in the wumpus
world

— A wumpus-world agent using propositional logic:

=P

Wi,

Biy < (Pays1V Poy-1V Pei1y V Pe1y)
Sx,y g (WX,y-i-l \ Wx,y—l Vv Wx+1,y Vv Wx—l,y)
W171 V W172 VeV W474

Wi VWi,

WiV =Wis

= 64 distinct proposition symbols, 155 sentences

18

The Wumpus Agent (1)

function HYBRID-WUMPUS-AGENT (percept) returns an action
inputs: percept, a list, [stench, breeze, glitter, bump, scream)]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”
t, a counter, intially 0, indicating time
plan, an action sequence, initially empty
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time t
safe € {[x,y] : Ask (KB,0K,) = true}
if ASK(KB, Glitter') = true then
plan < [Grab] + PLAN-ROUTE(current, {[1,1]}, safe) + [Climb]
if plan is empty then !
unvisited < {[x,y] : ASK(KB,L'X‘y } =false forall 'St}
plan € PLAN-ROUTE(current, unvisited N safe, safe)
if plan is empty and AsK(KB,HaveArrow') = true then
possible_wumpus < {[x,y] : ASK(KB,—-W, ,) = false }
plan € PLAN-SHOT(current, possible_wumpus, safe)
if plan is empty then // no choice but to take a risk
not_unsafe €< {[x,y] : ASK(KB—OK) = false }
plan < PLAN-ROUTE(current, unvisited N not_unsafe, safe)
if plan is empty then
plan € PLAN-ROUTE(current, {[1,1]}, safe) + [Climb]
action € POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t€ t+1
return action

The Wumpus Agent (2)

function PLAN-ROUTE(current, goals, allowed) returns an action sequence
inputs: current, the agent's current position
goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

We need more!

— Effect axioms:
L(1),1 A FacingEast® A Forward® = L%yl A =L

— We need extra axioms about the world.

— Frame problem
» Frame axioms:
Forward® = (HaveArrowt o HaveArroth)

Forward® = (WumpusAlive® < WumpusAlive**!)
» Successor-state axioms:

HaveArrow'™ < (HaveArrow’ A —Shoot")

21

Expressiveness limitation of propositional
logic

— KB contains “physics” sentences for every single square

— For every time t and every location [x, y],

L}, A FacingRight’ A Forward® = L7

— Rapid proliferation of clauses

22

Summary

— Logical agents apply inference to a knowledge base to
derive new information and make decisions.

— Two algorithms: DPLL & WalkSAT
— Hard satisfiability problems
— Applications to Wumpus World.

— Propositional logic lacks expressive power

23

