Inf2D 05: Informed Search and Exploration for Agents

Valerio Restocchi

School of Informatics, University of Edinburgh

23/01/20

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle

Outline

- Best-first search
- Greedy best-first search
- A^* search
- Heuristics
- Admissibility

Review: Tree search

function TREE-SEARCH(problem) returns a solution, or failure initialize the frontier using the initial state of problem
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution expand the chosen node, adding the resulting nodes to the frontier

A search strategy is defined by picking the order of node expansion from the frontier

Best-first search

- An instance of general TREE-SEARCH or GRAPH-SEARCH
- Idea: use an evaluation function f(n) for each node n
 - estimate of "desirability"
 Expand most desirable unexpanded node, usually the node with the lowest evaluation
- Implementation:

Order the nodes in frontier in decreasing order of desirability

- Special cases:
 - Greedy best-first search
 - A*search

Romania with step costs in km

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
- h(n): estimated cost of cheapest path from state at node n to a goal state
 - e.g., h_{SLD}(n): straight-line distance from n to goal (Bucharest)
 - Greedy best-first search expands the node that appears to be closest to goal

Added slide: Heuristic

What is a heuristic?

- From the greek word "heuriskein" meaning "to discover" or "to find"
- A heuristic is any method that is believed or practically proven to be useful for the solution of a given problem, although there is no guarantee that it will always work or lead to an optimal solution.
- Here we will use heuristics to guide tree search. This may not change the worst case complexity of the algorithm, but can help in the average case.
- We will introduce conditions (admissibility, consistency, see below) in order to identify good heuristics, i.e. those which actually lead to an improvement over uninformed search.
- See also: https://en.wikipedia.org/wiki/Heuristic

Properties of greedy best-first search

- Complete? No can get stuck in loops
 - Graph search version is complete in finite space, but not in infinite ones
- Time? $O(b^m)$ for tree version, but a good heuristic can give dramatic improvement
- Space? $O(b^m)$ keeps all nodes in memory
- Optimal? No

A^{*} search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
 - g(n): cost so far to reach n
 - h(n): estimated cost from n to goal
 - f(n): estimated total cost of path through n to goal
- A^* is both complete and optimal if h(n) satisfies certain conditions

A^* search example

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
 - Thus, f(n) = g(n) + h(n) never overestimates the true cost of a solution
- Example: h_{SLD}(n) (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A^* using TREE-SEARCH is optimal.

Optimality of *A*^{*} (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G.

$$- f(G_2) = g(G_2) - f(G) = g(G) - g(G_2) > g(G) - f(G_2) > f(G)$$

since $h(G_2) = 0$ since h(G) = 0since G_2 is suboptimal from above

Optimality of *A*^{*} (proof cntd.)

 Suppose some suboptimal goal G₂ has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G.

Hence $f(n) < f(G_2) \Rightarrow A^*$ will never select G_2 for expansion.

Consistent heuristics

A heuristic is consistent if for every node *n*, every successor *n'* of *n* generated by any action *a*,

$$h(n) \leq c(n, a, n') + h(n')$$

- If h is consistent, we have

$$f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') \geq g(n) + h(n) \geq f(n)$$

i.e., f(n) is non-decreasing along any path.

c(n,a,n')h(n)h(n')G

Theorem:

If h(n) is consistent, A^* using GRAPH-SEARCH is optimal.

Optimality of *A*^{*}

- A^* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A^{*}

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- Time? Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

Example:

- for the 8-puzzle:
 - $h_1(n)$: number of misplaced tiles
 - ▶ $h_2(n)$: total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Exercise: Calculate these two values:

$$- h_1(S) = ?$$

 $- h_2(S) = ?$

Start State

Goal State

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible) then

- ► *h*₂ dominates *h*₁
- ▶ *h*₂ is better for search

- Typical search costs (average number of nodes expanded):

d = 12 IDS = 3,644,035 nodes *A*^{*}(*h*₁) = 227 nodes *A*^{*}(*h*₂) = 73 nodes

 d = 24 IDS = too many nodes *A*^{*}(*h*₁) = 39,135 nodes *A*^{*}(*h*₂) = 1,641 nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
 - then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square,
 - then $h_2(n)$ gives the shortest solution
- Can use relaxation to automatically generate admissible heuristics

Summary

Smart search based on heuristic scores.

- Best-first search
- Greedy best-first search
- A^* search
- Admissible heuristics and optimality.