Inf2D 04: Adversarial Search

Stefano Albrecht

School of Informatics, University of Edinburgh

23/01/18

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann
Outline

- Games
- Optimal decisions
- α-β pruning
- Imperfect, real-time decisions
Games vs. search problems

- We are (usually) interested in zero-sum games of perfect information
 - Deterministic, fully observable
 - Agents act alternately
 - Utilities at end of game are equal and opposite
- “Unpredictable” opponent ➔ specifying a move for every possible opponent reply
- Time limits ➔ unlikely to find goal, must approximate
Game tree (2-player, deterministic, turns)

- 2 players: MAX and MIN
- MAX moves first
- Tree built from MAX’s POV

← Utility of each terminal state from MAX’s point of view.
Optimal Decisions

- Normal search: optimal decision is a sequence of actions leading to a goal state (i.e. a winning terminal state)
- Adversarial search:
 - MIN has a say in game
 - MAX needs to find a contingent strategy which specifies:
 - MAX’s move in initial state then ...
 - MAX’s moves in states resulting from every response by MIN to the move then ...
 - MAX’s moves in states resulting from every response by MIN to all those moves, etc. ...

minimax value of a node = utility for MAX of being in corresponding state:

\[
\text{MINIMAX}(s) =
\begin{cases}
\text{UTILITY}(s) & \text{if } \text{TERMINAL-TEST}(s) \\
\max_{a \in \text{Actions}(s)} \text{MINIMAX(RESULT}(s, a)) & \text{if } \text{PLAYER}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \text{MINIMAX(RESULT}(s, a)) & \text{if } \text{PLAYER}(s) = \text{MIN}
\end{cases}
\]
Minimax

- Perfect play for deterministic games
- Idea: choose move to position with highest minimax value
 = best achievable payoff against best play
- Example: 2-ply game:
Minimax algorithm

Idea: Proceed all the way down to the leaves of the tree then minimax values are backed up through tree
Properties of minimax

- **Complete?** Yes (if tree is finite)
- **Optimal?** Yes (against an optimal opponent)
- **Time complexity?** $O(b^m)$
- **Space complexity?** $O(bm)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for “reasonable” games
- exact solution completely infeasible!
- would like to eliminate (large) parts of game tree
α-β pruning example
$\alpha - \beta$ pruning example
α-β pruning example
α-β pruning example

MAX

MIN

3
12
8
2
14
5

≥ 3
≤ 2

X
X

Stefano Albrecht
Inf2D 04: Adversarial Search
α-β pruning example
Are minimax value of root and, hence, minimax decision independent of pruned leaves?

Let pruned leaves have values u and v, then

\[
\text{MINIMAX}(\text{root}) = \max(\min(3, 12, 8), \min(2, u, v), \min(14, 5, 2)) \\
= \max(3, \min(2, u, v), 2) \\
= \max(3, z, 2) \text{ where } z \leq 2 \\
= 3
\]

Yes!
Properties of $\alpha-\beta$

- Pruning does not affect final result (as we saw for example)
- **Good move ordering** improves effectiveness of pruning (How could previous tree be better?)
- With “perfect ordering”, time complexity $O\left(b^{m/2}\right)$
 - branching factor goes from b to \sqrt{b}
 - (alternative view) doubles depth of search compared to minimax
- A simple example of the value of reasoning about which computations are relevant (a form of **meta-reasoning**)

Stefano Albrecht Inf2D 04: Adversarial Search
Why is it called α-β?

- α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for MAX.
- If v is worse than α, MAX will avoid it \Rightarrow prune that branch.
- Define β similarly for MIN.
The α-β algorithm

```plaintext
function ALPHA-BETA-SEARCH(state) returns an action
    $v \leftarrow$ MAX-VALUE(state, $-\infty$, $+\infty$)
    return the action in ACTIONS(state) with value $v$

function MAX-VALUE(state, $\alpha$, $\beta$) returns a utility value
    if TERMINAL-TEST(state) then return UTILITY(state)
    $v \leftarrow -\infty$
    for each $a$ in ACTIONS(state) do
        $v \leftarrow$ MAX($v$, MIN-VALUE(RESULT(s, a), $\alpha$, $\beta$))
        if $v \geq \beta$ then return $v$
        $\alpha \leftarrow$ MAX($\alpha$, $v$)
    return $v$
```

- α is value of the best i.e. highest-value choice found so far at any choice point along the path for MAX
- β is value of the best i.e. lowest-value choice found so far at any choice point along the path for MIN

Prune as this value is worse for MIN and so won’t ever be chosen by MIN!
The α-β algorithm

function MIN-VALUE(state, α, β) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 $v \leftarrow +\infty$
 for each a in ACTIONS(state) do
 $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}($RESULT(s, a), α, β))$
 if $v \leq \alpha$ then return v
 $\beta \leftarrow \text{MIN}(\beta, v)$
 return v

Prune as this value is worse for MAX and so won't ever be chosen by MAX!
Resource limits

- Suppose we have 100 secs, explore 10^4 nodes/sec
 \Rightarrow 10^6 nodes per move
- Standard approach:
 - cutoff test: e.g., depth limit (perhaps add quiescence search, which tries to search interesting positions to a greater depth than quiet ones)
- evaluation function
 $=$ estimated desirability of position
Evaluation functions

- For chess, typically linear weighted sum of features

\[
EVAL(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)
\]

where each \(w_i \) is a weight and each \(f_i \) is a feature of state \(s \)

- Example
 - queen = 1, king = 2, etc.
 - \(f_i \): number of pieces of type \(i \) on board
 - \(w_i \): value of the piece of type \(i \)
Cutting off search

- Minimax Cutoff is identical to MinimaxValue except
 1. TERMINAL-TEST is replaced by CUTOFF
 2. UTILITY is replaced by EVAL
- Does it work in practice?
 \[b^m = 10^6, \ b = 35 \implies m = 4 \]
- 4-ply lookahead is a hopeless chess player!
 - 4-ply \approx human novice
 - 8-ply \approx typical PC, human master
 - 12-ply \approx Deep Blue, Kasparov
Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions used to refuse to compete against computers, who are too bad. In Go, $b > 300$, so most programs use pattern knowledge bases to suggest plausible moves. 2016: AlphaGo
Games are fun to work on!
They illustrate several important points about AI
Perfection is unattainable → must approximate
Good idea to think about what to think about