
Inf2D 03: Search Strategies

Valerio Restocchi

School of Informatics, University of Edinburgh

17/01/20

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann, Vaishak Belle



Outline

− Uninformed search strategies use only information in
problem definition

− Breadth-first search

− Depth-first search

− Depth-limited and iterative deepening search

2



Search strategies

− A search strategy is defined by picking the order of node
expansion – nodes are taken from the frontier

− Strategies are evaluated along the following dimensions:

I completeness: does it always find a solution if one exists?
I time complexity: number of nodes generated
I space complexity: maximum number of nodes in memory
I optimality: does it always find a least-cost solution?

− Time and space complexity are measured in terms of

I b: maximum branching factor of the search tree
I d : depth of the least-cost solution
I m: maximum depth of the state space (may be ∞)

3



Recall: Tree Search

“Arad” is a repeated state!

4



Repeated states

− Failure to detect repeated states can turn a linear
problem into an exponential one!

5



Graph search

Augment TREE-SEARCH with a new data-structure:

− the explored set (closed list), which remembers every
expanded node

− newly expanded nodes already in explored set are
discarded

6



Breadth-first search

− Expand shallowest unexpanded node

− Implementation:

I frontier is a FIFO queue, i.e., new successors go at end

7



Breadth-first search

− Expand shallowest unexpanded node

− Implementation:

I frontier is a FIFO queue, i.e., new successors go at end

8



Breadth-first search

− Expand shallowest unexpanded node

− Implementation:

I frontier is a FIFO queue, i.e., new successors go at end

9



Breadth-first search

− Expand shallowest unexpanded node

− Implementation:

I frontier is a FIFO queue, i.e., new successors go at end

10



Breadth-first search algorithm

11



Properties of breadth-first search

− Complete? Yes (if b is finite)

− Time? b + b2 + b3 + ... + bd = O
(
bd

)
(worst-case:

regular b-ary tree of depth d)

− Space? O
(
bd

)
(keeps every node in memory)

− Optimal? Yes (if cost = 1 per step, then a solution is
optimal if it is closest to the start node)

Space is the bigger problem (more than time)

12



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

13



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

14



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

15



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

16



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

17



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

18



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

19



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

20



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

21



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

22



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

23



Depth-first search

− Expand deepest unexpanded node

− Implementation:

I frontier = LIFO queue, i.e., put successors at front

24



Properties of depth-first search

− Complete? No: fails in infinite-depth spaces, spaces with
loops

I Modify to avoid repeated states along path
I Complete in finite spaces

− Time? O (bm): terrible if m is much larger than d

I but if solutions are dense, may be much faster than
breadth-first

− Space? O (bm), i.e., linear space!

− Optimal? No

25



Mid-Lecture Problem

− Compare breadth-first and depth-first search.

I When would breadth-first be preferable?
I When would depth-first be preferable?

26



Solution

− Breadth-First:

I When completeness is important.
I When optimal solutions are important.

− Depth-First:

I When solutions are dense and low-cost is important,
especially space costs.

27



Depth-limited search

This is depth-first search with depth limit l , i.e., nodes at
depth l have no successors
Recursive implementation:

28



Iterative deepening search

29



Iterative deepening search

30



Iterative deepening search

31



Iterative deepening search

32



Iterative deepening search

33



Iterative deepening search

− Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d)b + (d − 1)b2 + · · ·+ (2)bd−1 + (1)bd

− Some cost associated with generating upper levels
multiple times

− Example: For b = 10, d = 5,

I NBFS = 10+100+3, 000+10, 000+100, 000 = 111, 110
I NIDS = 50+400+3, 000+20, 000+100, 000 = 123, 450

− Overhead = (123, 450− 111, 110)/111, 110 = 11%

34



Properties of iterative deepening search

− Complete? Yes

− Time? (d)b + (d − 1)b2 + ... + (1)bd = O(bd)

− Space? O (bd)

− Optimal? Yes, if step cost = 1

35



Uniform cost search (UCS)

Step costs are not uniform.

Details: home work.

36



Summary of algorithms

37



Summary

− Variety of uninformed search strategies:

I breadth-first
I depth-first
I depth limited
I iterative deepening

− Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

38


