
Singleton pattern
From Wikipedia, the free encyclopedia

In software engineering, the singleton design pattern is used to restrict instantiation of a class to one object. This is
useful when exactly one object is needed to coordinate actions across the system. Sometimes it is generalized to
systems that operate more efficiently when only one or a few objects exist. It is also considered an anti-pattern since it
is often used as a euphemism for global variable. Before designing a class as a singleton, it is wise to consider whether
it would be enough to design a normal class and just use one object.

The singleton pattern is implemented by creating a class with a method that creates a new instance of the object if one
does not exist. If an instance already exists, it simply returns a reference to that object. To make sure that the object
cannot be instantiated any other way, the constructor is made either private or protected. Note the distinction between
a simple static instance of a class and a singleton. Although a singleton can be implemented as a static instance, it can
also be lazily constructed, requiring no memory or resources until needed.

The singleton pattern must be carefully constructed in multi-threaded applications. If two threads are to execute the
creation method at the same time when a singleton does not yet exist, they both must check for an instance of the
singleton and then only one should create the new one. If the programming language has concurrent processing
capabilities the method should be constructed to execute as a mutually exclusive operation.

The classic solution to this problem is to use mutual exclusion on the class that indicates that the object is being
instantiated.

Contents

1 Class diagram
2 Java example implementation
3 Another Java example implementation
4 C++ example implementation
5 Thread-safe C++ example implementation using POSIX threads
6 C# example implementation
7 C# example implementation using Generics
8 REALbasic example implementation
9 ActionScript 3 Example Implementation
10 Ruby example implementation
11 Python Borg pattern
12 Example of usage with the factory method pattern
13 See also
14 Footnotes
15 References
16 External links

Class diagram

Image:Singleton sangeet.png

Java example implementation

A correct threadsafe Java programming language lazy-loaded solution known as the "Initialization On Demand
Holder" idiom suggested by Bill Pugh follows:

Another Java example implementation

An incorrect Java programming language lazy-loaded solution known as the "Initialization On Demand Holder"
idiom suggested by Pankaj Jaiswal. Double-checked locking is not guaranteed to work [1]:

C++ example implementation

A possible C++ solution using Curiously Recurring Template Pattern (also known as Meyers singleton) where the
singleton is a static local object (note: this solution is not thread-safe and is designed to give an idea of how singletons
work rather than a solution usable in large-scale software project).

 public class Singleton {
 // Private constructor suppresses generation of a (public) default constructor
 private Singleton() {}

 private static class SingletonHolder {
 private static Singleton instance = new Singleton();
 }

 public static Singleton getInstance() {
 return SingletonHolder.instance;
 }
 }

 public class Singleton {
 private static Singleton test1;

 // Private constructor suppresses generation of a (public) default constructor
 private Singleton() {
 }

 public static Singleton getInstance() {
 if(test1 == null) {
 // Not guaranteed to work
 synchronized (Singleton.class) {
 if(test1 == null) {
 test1 = new Singleton();
 }
 }
 }
 return test1;
 }
 }

template<typename T> class Singleton
{

 public:
 static T& Instance()
 {
 static T theSingleInstance; //assumes T has a default constructor
 return theSingleInstance;
 }
};

Thread-safe C++ example implementation using POSIX threads

A common design pattern for thread safety with the singleton class is to use double-checked locking. However, due to
the ability of optimising compilers (and CPUs!) to re-order instructions, and the absence of any consideration being
given to multiple threads of execution in the language standard, double-checked locking is intrinsically prone to

failure in C++. There is no model—other than runtime libraries (e.g. POSIX threads, designed to provide concurrency
primitives)—that can provide the necessary execution order.[1]
(http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf#search=%22meyers%20double%20checked%20locking%22
. Future C++ versions may include threads as a language standard[2] (http://www.ddj.com/dept/cpp/184401518) , but
this is supposition at the time of writing.

By adding a mutex to the singleton class, a thread-safe implementation may be obtained.

Define two helper classes, mutex and mutex_locker:

We then redefine the singleton class as follows:

class OnlyOne : public Singleton<OnlyOne>
{
 //..rest of interface defined here
};

class mutex
{
public:
 mutex()
 {
 pthread_mutex_init(&m,0);
 }

 void lock()
 {
 pthread_mutex_lock(&m);
 }

 void unlock()
 {
 pthread_mutex_unlock(&m);
 }

private:
 pthread_mutex_t m;
};

class mutex; // forward declaration

class mutex_locker
{
public:
 mutex_locker(mutex &mx) // we are designed to be called under the RAII paradigm
 {
 m=&mx;
 m->lock();
 }

 ~mutex_locker()
 {
 m->unlock();
 }

private:
 mutex *m;
};

Implementation of the singleton class:

Runtime declaration of the static members:

Note the use of the mutex_locker class in the singleton::instance() function. The mutex_locker is
being used as an RAII object, also known as scoped lock. mutex_locker’s constructor aquires the lock; its
destructor releases it. This guarantees that the mutex lock will be relinquished even if an exception is thrown during
the execution of singleton::instance(), since the language specification pledges that the destructors of
automatically (i.e. stack) allocated objects are invoked during stack unwind.

An obvious concern is the cost of acquiring and releasing the mutex every time singleton::instance() is
called. There are several approaches available for ameliorating this problem. Firstly, code should be profiled to find if
the cost of the synchronisation operation is significant (premature optimisation is the root of all evil—Hoare, Knuth).
Modern multi-threaded operating systems have been designed with special care given to the efficiency of concurrency
primitives (a few hundred nanoseconds to a few microseconds per operation is not atypical). It may well be that the
cost of locking and unlocking the mutex is trivial at runtime. Secondly, the nature of the singleton class is the
representation of a long-lived, process-unique object that should only be created once. Pushing its first invocation to
early in the lifetime of a process obviates the need for locking (a compile-time flag to disable the mutex might be
useful here; clearly for a single-threaded application the mutex is completely redundant). Likewise, if the concurrency
model of the application is the master/slave paradigm, the singleton can be initialised in the main thread before worker
threads are created. Lastly, an instance of the (mutex-aware) singleton can be acquired at thread startup (in this
model, using the pthread_once() function) and assigned to thread-local storage.

C# example implementation

class mutex; // forward declaration

class singleton
{
public:
 static singleton* instance();

protected:
 singleton();

private:
 static singleton *inst;
 static mutex m;
};

singleton::singleton()
{
 ... // do whatever initialisation is necessary
}

singleton* singleton::instance()
{
 mutex_locker lock(m);

 if(inst==0)
 inst=new singleton;

 return inst;
}

singleton *singleton::inst=0;
mutex singleton::m;

C# example implementation using Generics

This example is thread safe with lazy initialization

REALbasic example implementation

An example REALbasic solution uses a "Shared" method (available only in REALbasic 2006r1 or greater) to provide
the instance. Note that this is thread-safe because REALbasic uses a cooperative threading model (instead of a
preemptive one).

In a prototype-based programming language, where objects but not classes are used, a "singleton" simply refers to an
object without copies or that is not used as the prototype for any other object.

Singleton (LoadBalancer) defines an Instance operation that lets clients access its unique instance. Instance is a class
operation responsible for creating and maintaining its own unique instance. Ensure a class has only one instance and
provide a global point of access to it.

public class Singleton
{
 private static readonly Singleton instance = new Singleton();

 private Singleton() {}

 public static Singleton Instance
 {
 get { return instance; }
 }
}

 /// <summary>
 /// Generic class implements singleton pattern.
 /// </summary>
 /// <typeparam name="T">
 /// Reference type. Important: Must have private constructor (not public).
 /// </typeparam>
 public class Singleton<T> where T : class
 {
 Singleton() { }

 public static T Instance
 {
 get { return SingletonCreator.instance; }
 }

 class SingletonCreator
 {
 static SingletonCreator() { }

 internal static readonly T instance = typeof(T).InvokeMember(typeof(T).Name,
 BindingFlags.CreateInstance |
 BindingFlags.Instance |
 BindingFlags.NonPublic,
 null, null, null) as T;
 }
 }

Class Singleton
 Protected Sub Constructor()
 // Initialization code defined here
 End Sub
 Shared Function Instance() as Singleton
 static s as new Singleton
 return s
 End Function
End Class

ActionScript 3 Example Implementation

Ruby example implementation

Thread safe

Not thread safe

Python Borg pattern

According to influential Python programmer Alex Martelli, The Singleton design pattern (DP) has a catchy name, but

the wrong focus—on identity rather than on state. The Borg design pattern has all instances share state instead .[2] A
rough consensus in the Python community is that sharing state among instances is more elegant, at least in Python,
than is caching creation of identical instances on class initialization. Coding shared state is nearly transparent:

Example of usage with the factory method pattern

The singleton pattern is often used in conjunction with the factory method pattern to create a system-wide resource
whose specific type is not known to the code that uses it. An example of using these two patterns together is the Java
Abstract Windowing Toolkit (AWT).

java.awt.Toolkit

(http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Toolkit.html) is an abstract class that
binds the various AWT components to particular native toolkit implementations. The Toolkit class has a

package
 public final class Singleton {
 private static var instance:Singleton = new Singleton();

 public function Singleton() {
 if (instance) throw new Error("Singleton and can only be accessed through Singleton.getInstance()");
 }

 public static function getInstance():Singleton {
 return instance;
 }
 }
}

class SingleObj
 include Singleton
 # only one instance of this class can be created
end

class SingleObj
 private_class_method :new
 @@single = nil
 def Singleton.create
 @@single = new unless @@single
 @@single
 end
end

class Borg:
 __shared_state = {}
 def __init__(self):
 self.__dict__ = self.__shared_state
 # and whatever else you want in your class -- that’s all!

Toolkit.getDefaultToolkit()

(http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Toolkit.html#getDefaultToolkit()

factory method that returns the platform-specific subclass of Toolkit. The Toolkit object is a singleton because
the AWT needs only a single object to perform the binding and the object is relatively expensive to create. The toolkit
methods must be implemented in an object and not as static methods of a class because the specific implementation is
not known by the platform-independent components. The name of the specific Toolkit subclass used is specified by
the "awt.toolkit" environment property accessed through System.getProperties()
(http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html#getProperties())

.

The binding performed by the toolkit allows, for example, the backing implementation of a java.awt.Window
(http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Window.html) to bound to the
platform-specific java.awt.peer.WindowPeer implementation. Neither the Window class nor the application
using the window needs to be aware of which platform-specific subclass of the peer is used.

See also

Initialization on Demand Holder Idiom
Double-checked locking
Multiton pattern

Footnotes

^ David Geary. Simply Singleton
(http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html) . JavaWorld. Retrieved on
2006-10-02.

1.

^ Alex Martelli. Singleton? We don’t need no stinkin’ singleton: the Borg design pattern
(http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66531) . ASPN Python Cookbook. Retrieved on
2006-09-07.

2.

References

"C++ and the Perils of Double-Checked Locking"
(http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf#search=%22meyers%20double%20checked%20locking%22
Meyers, Scott and Alexandrescu, Andrei, September 2004.
"The Boost.Threads Library" (http://www.ddj.com/dept/cpp/184401518) Kempf, B., Dr. Dobb’s Portal, April
2003.

External links

A Pattern Enforcing Compiler™ (http://pec.dev.java.net/) that enforces the Singleton pattern amongst other
patterns
Description from the Portland Pattern Repository (http://c2.com/cgi/wiki?SingletonPattern)
Description (http://home.earthlink.net/~huston2/dp/singleton.html) by Vince Huston
Implementing the Singleton Pattern in C# (http://www.yoda.arachsys.com/csharp/singleton.html) by Jon Skeet
A Threadsafe C++ Template Singleton Pattern for Windows Platforms
(http://www.opbarnes.com/blog/Programming/OPB/Snippets/Singleton.html) by O. Patrick Barnes
Implementing the Inheritable Singleton Pattern in PHP5

(http://svn.shadanakar.org/filedetails.php?repname=onPHP&path=%2Ftrunk%2Fcore%2FBase%2FSingleton.class.php&rev=0&sc=0
Singleton Pattern and Thread Safety (http://www.oaklib.org/docs/oak/singleton.html)
PHP patterns (http://www.php.net/manual/en/language.oop5.patterns.php)
Singleton Considered Stupid (http://opal.cabochon.com/~stevey/blog-rants/singleton-stupid.html)
Article "Double-checked locking and the Singleton pattern
(http://www-128.ibm.com/developerworks/java/library/j-dcl.html?loc=j) " by Peter Haggar
Article "Use your singletons wisely (http://www-106.ibm.com/developerworks/library/co-single.html) " by J. B.
Rainsberger
Article "Simply Singleton (http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html) " by
David Geary
Article "Description of Singleton (http://www.dofactory.com/Patterns/PatternSingleton.aspx) " by Arun

Creational: Abstract factory • Builder • Factory • Prototype • Singleton

Structural: Adapter • Bridge • Composite • Decorator • Façade • Flyweight • Proxy

Behavorial: Chain of responsibility • Command • Interpreter • Iterator • Mediator • Memento • Observer • State • Strategy
• Template method • Visitor

Retrieved from "http://en.wikipedia.org/wiki/Singleton_pattern"

Categories: Software design patterns | Articles with example Java code | Articles with example C++ code | Articles
with example C Sharp code | Articles with example REALbasic code | Articles with example ActionScript code |
Articles with example Ruby code | Articles with example Python code

This page was last modified 09:32, 21 October 2006.
All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.

Design patterns in Design Patterns [Hide]

