Inf2C tutorial SE3: Design

1 Introduction

This tutorial encourages you to look in depth at a simple design pattern, considering the
design issues that arise both in deciding whether or not to use the pattern, and in deciding
what variant to use.

First, recall the design principles discussed in the course so far. (List the ones you can
remember. )

Next, consult the Wikipedia entry on the Singleton design pattern. (Wikipedia articles
can change without notice. There is a copy of the way it was when I wrote this on the
Schedule page: consult this if you spot a mismatch between what this tutorial sheet expects
the article to say and what it actually does say when you look.)

Read the opening section, down to Common uses, and discuss it. Specifically, discuss:

e Why might the designer wish to ensure that there could only be one instance of a given
class, rather than simply creating the class as usual and only creating one instance?

e Conversely, what disadvantages might there be to restricting the system to have only
one instance where this is not really required?

e What do you think an “anti-pattern” is, and what do you think of the idea? Is it useful
to identify anti-patterns? (This is a question with no unique right answer: at least
one book of anti-patterns has been published and has sold well and been praised, but
equally, many people think one shouldn’t study them.)

Next read the Common uses section, and check that you understand the point about
why Singletons are often preferred to global variables. (Later, if time permits, come back
and discuss the other bullet points here: you will need to have someone in the group who has
looked up the other patterns mentioned.)

2 Singletons in Java and UML

Before you look at the Java code in the article: write the Java code for a class Catalogue
which will only ever be able to have one instance. Make sure you provide some means for any
client to access the unique instance (since a client cannot be allowed just to create its own
instance...).

You may find it helpful to consult the UML class diagram in the article, although it uses
some UML notation we did not cover in the lecture. What do you think the underlining of
an attribute and a method in the class means? Once you’ve worked it out, do you think this
notation is consistent with the uses of underlining that you have seen in the class? Why?



Next, read the Java implementations in the article. Compare them with each other and
with the simple Java code you wrote above. Check that you understand the Java keywords
private, protected, static, final, enum and their roles here; also that you understand the
use of inner classes.

Extensions for after the tutorial

After the tutorial, follow some of the links in the Wikipedia article to explore some of these
issues further. See how many of the code examples in different languages you can understand,
looking things up as necessary. Have a look at the discussions on the Talk page.

3 Sequence diagrams

Suppose that there is a singleton class Catalogue in your library application, whose instance
methods include an operation void addCopy(b:Book). This creates a new Copy object and
inserts it into a collection of references to Copy objects held by the Book b. (It probably also
updates its own internal state, but you need not model this.)

Draw a sequence diagram which shows an actor sending a message addCopy (b) to the
instance of class Catalogue, and shows what this object will do in response. Take care over
activity bars, return arrows, and the placement of objects. Notice where you have to make
design decisions.

Extensions, possibly for after the tutorial

What are you abstracting away or over-simplifying? In other words, what else would you
need to know or decide before you could program this behaviour, or how does this application
differ from a real object-oriented library catalogue system?

Suppose that, instead of assuming that our actor already knew how to address the single-
ton Catalogue object, we had wanted to model another object getting access to the singleton
Catalogue object in the first place. What new issues would that have brought up? Try it.



