Inf2C, Computer Systems: Tutorial 3, Week 7
Guide for tutors

Stratis Viglas

. Ripple Carry Adder

Assume that the propagation delay in each gate in a 32-bit ripple carry
adder is 100ps. How fast can a 32-bit addition be performed? Assuming
that the adder delay is the major limiting factor on the clock speed, how
fast can we clock the processor?

The longest path is from carry in at bit 0 to sum 31. For the full adders
at bit positions 0-31, the carry propagates through 2 gates: one AND and
one OR (cout = ab + ac + bc) For the last full adder the slowest path is
to the sum output, not the carry output. The delay is 3 gates: inverter,
AND, OR. (s=a-b-c+a-b-¢+a-bc+a-b-c) So total 31 full-adders * 2
gates each + 3 gates for the last adder = 65 gate delays * 100ps = 6.5ns

. Modulo-6 Counter

Design a synchronous Modulo-6 counter that will be able to count up to
5 clock positive edges. When it reaches 5, it resets to 0 and it starts
the whole process again. In order to design this counter you can use D
flip-flops and any two or three input gate you like.

First note that we need to be able to count up to 6, which means that we
need 3 bits to represent all the possible states of our FSM. The state ma-
chine can be seen in Figure 1. From this FSM we can derive the transition
table and from that we have the circuit shown in Figure 2.

. Datapath
Discuss the steps in executing the jal, the 1w and the add instruction in

000
101 ﬁ @/\ 001

100 () 010

011

Figure 1: Modulo Counter FSM

| nc2
P
D
- ncl
I
. | |
ncO
D Q
Z; c0
ci
c2

clk

Figure 2: Modulo Counter Circuit

the multiclock datapath presented in Figure 3.

Now assume that an access to the register file takes 6.5ns, an access to
the memory takes 100ns and the ALU delay is 6ns. Assume also that the
instruction’s execution stalls when it waits for a resource to produce a
result. If we were to optimize this simple processor, which should be the
component we should spend our main design efforts on, what could we do
to improve it?

In the MIPS datapath all the instructions are executed in either 4 or 5
cycles depending on the operation required. It will be easier to take each
instruction that needs to be analyzed, and break down the operations re-
quired for it’s completion per cycle. The first two cycles are the same for
all the instructions. During the first cycle, we fetch in the Instruction
Register from the memory location indicated by the current PC, we also
increase the PC.

In the second cycle, we decode the Instruction register and get which reg-
isters correspond to register A and register B, we also sign extend the 15
LSB to get, along with the PC the Immediate value.

JAL:

Since the JAL is a branch instruction in the third cycle we save the PC+4
held in ALUOQOut to register 31. This require a small modification to the
datapath: we need to have 31 as an input to the multiplexer which provides

PCWriteCond > PCSource

PCWiite
ALL!
lorD N D.:s.:ma» Op
PyR— ALUSTCB
MemWrite | Control ALUSrch
RegWrite

MemtoReq

IRWrite

H%uﬂ_ N RegDst

xc T

Address
Memory

MemData

Write
data

3
Jump 1
Instruction [25-0] mmv i 28 i SO
N Nleft 2 >
Instruction
e PC [31-28]
Instruction Read
[25-21] | register 1
Instruction | Read Read
[20-16] register 2 data 1
Instruction oJ|r s::% egisters ALUOW
4 M > t Read
ns-ol Instruction| u register gara 2
Instruction [15-11] ,_x Wiite
register dota
Instruction 0
[15-0] M
u
X
Memory 1
data 16
register /

Instruction [5-0]

Figure 3: MIPS Datapath

the write register to the register file (mux control signal regDst. At the
same time we compute the jump location using the shift left by 2 unit and
concatenating with the upper bits of the PC (look above the ALU in the
datapath).

LW:

The LW is a memory instruction, so in the third cycle we have to form
the effective address, feeding the ALU with the A register and the sign
extended Immediate value (cycle 2)

In the fourth cycle we load the Memory Data Register MDR with the mem-
ory location computed in the previous cycle.

In this final cycle, we load the register indicated by the bits 16 to 20 of the
Instruction Register, with the value we have in the MDR.

ADD:

Finally we have this instruction is a register-register operation. So in the
third cycle, we compute the addition using the ALU of the contents of
register A and register B.

In the fourth cycle we load the register indicated by the bits 11to 15 of the
instruction register with the computed value.

In the final section, note that the memory operation costs a lot more than
the access to the register file and the ALU, therefore one should try to
improve that. The obvious way to do it, is to use a cache which will provide
a fast access for the vast majority of the memory operations. Caches have
not been covered in lectures yet and will be discussed next week, so the
point is to motivate optimising the memory system rather than looking at
any specifics yet.

. Pipeline

What is the advantage of having a pipelined processor? Make sure you
recall what structural and data hazards are. Consider a five stage MIPS
pipeline. Assume that the processor has one memory port. Track the
state of the pipeline at each cycle while executing the following sequence
of instructions.

add $t0, $t3, $t4
1w $t2, 4($t4)

add $t3, $t2, $t1
1w $t8, 3($t9)

add $t4, $t5, $t6
xor $t1, $t2, $t3
add $t7, $t3, $t4

Will adding a memory port change anything?

It will be useful to link to the previous part when talking about this, noting
that most of the processor is idle at any given time. Hazards have been

covered in lectures and students should be familiar with them. Review if
required.

The instruction sequence will result in three instructions stalling in the
pipeline.

Instruction 8 depends on the load in instruction 2, so a three cycle stall is
introduced.

There is a potential structural hazard that arises because the IF stage of
instruction 7 overlaps with the MEM stage of instruction 4. Instruction
6 (zor) needs to read t3, which is written in instruction 3 (add). This
introduces one stall cycle. As a result the instruction fetch of instruction
7 (add) is delayed and no structural hazard occurs.

There is a further dependence between instructions 5 and 7.

Therefore in this particular code the structural hazard does not arise, how-
ever, it can happen with a different set of instructions.

