Inf2C, Computer Systems: Tutorial 1, Week 3
Guide for tutors

Stratis Viglas

1. Two’s complement. What decimal number does the two’s complement

binary number
1111 1111 1111 1111 1111 1111 1110 0101
represent?

Answer. A good idea is to walk students through a simple conversion
algorithm:

o Look at leftmost bit to see if it is positive or negative;
o [f positive, convert number from binary to decimal;
o If negative, determine magnitude by:

— Complementing the bits

— Adding 1

— The decimal number is the negative of this number

So, in the current example, the number is negative. The complement is:
0000 0000 0000 0000 0000 0000 0001 1010

which is 26 in decimal; plus 1 equals 27 so the number is —27.

. Number representation and addition. Using 8 bits represent the
numbers +13 and —4, using both 2’s complement and sign-magnitude bi-
nary representation. Perform the common binary addition of the numbers,
in both representations. What are the results? Are they correct? Based
on the above results, comment on the advantages and disadvantages of
two forms of representation.

Answer. Based on the results, comment on the advantages and disad-
vantages of the two forms of representation.

+13 in 8-bit binary is 0000 1101; —4 in signed-magnitude is 1000 0100
and in 2’s complement is 1111 1100. Adding in signed-mignitude we have
1001 0001; this is —17 and incorrect. Two’s complement addition gives
us 0000 1001, which is 9 and the correct result.

3. Floating point representation.



(a) Compute the equivalent normalised binary number and the corre-
sponding TEEE 754 32-bit representation for the decimal value of
61.

(b) What decimal number is represented by this single precision float?
1 10000001 00100000000000000000000

Answer.

(a) Again, walk the students through a simple decimal to floating point
conversion algorithm:

o Convert the absolute value of the decimal number to a binary
integer plus a binary fraction;

e Normalize the number in binary scientific notation to obtain the
mantissa and the exponent;

e Set the sign bit to 0 for a positive number and to 1 for a negative
number.

In this case, 61 is binary 111101. The number has no fractional part.
This needs to be converted into a 1.z notation, which is 1.11101x25.
Therefore the mantissa is 11101 and the exponent in excess-127 nota-
tion is 1274+ 5 = (132)19 = (10000100)5 and the final representation
18:

0 10000100 11101000000000000000000

(b) Simply walk them through the decimal representation being given by:
(_l)sign x 1.mantissa x 26EPONENt—127

In this case the number is negative (sign = 1), the exponent is equal
to 129 and the mantissa is equal to 0.125. So the result is —1 X
1.125 x 22 = —4.5.

4. Overflow. Using only 8 bits, perform the arithmetic operation: 115+ 33
using 2’s complement. What is wrong with the result? Discuss what are
the conditions that can cause overflow when adding or subtracting two 2’s
complement numbers. Without looking at the values of the operands, is
there a way of detecting overflow while performing the addition? Does it
work for both positive and negative overflow? (Hint: consider the carries
at the 2 most significant bit positions.)

Answer. The 8-bit binary representations are:

e 115 = 0111 0011
e 33 = 0010 0001

Adding them, we get 1001 0100. This is an incorrect negative result
caused by overflow. To detect overflow for 2’s complement addition we
can look at the carry values coming into and out of the most significant
bit. If they are equal (both zero or both one), there is no overflow. If they
are different overflow has occurred.



5. Bit-masking and hexadecimal notation. Bit masking is an operation
used for extracting specific bits from a binary variable. Perform the fol-
lowing operation and give the result as a hex number: 0x5e AND 0x30
(AND is the bitwise logical “and” operation, i.e., result is 1 only if both
bits are 1.) How can you set the fifth bit (from the right hand side) of a
binary variable w?

Answer. Converting hex numbers to binary is quite simple. Four bits
are required for each hex digit and there is a standard mapping between
hex digits and binary representation. In this case the conversion is:

e (Ozbe = 0101 1110
e 0x30 = 0011 0000

AND-ing the two numbers gives 0001 0000

To set a bit of a variable w you need to create a mask m where only
the required bit is set (e.g., by setting the mask to 20~ — assuming bit
numbering starts from the right and an index of 1) and then OR-ing w
with m.



