Software design, examples of simple design
patterns.

Julian Bradfield

School of Informatics
University of Edinburgh



What is design?

For example: what are the classes in your system?



What is design?

For example: what are the classes in your system?

Design is the process of deciding how software will meet
requirements.

Usually excludes detailed coding level.



What is design?

For example: what are the classes in your system?

Design is the process of deciding how software will meet
requirements.

Usually excludes detailed coding level.

What is good design?



A quotation from Donald Schon

Designers put things together and bring new things into being,
dealing in the process with many variables and constraints, some
initially known and some discovered through designing. Almost
always, designers’ moves have consequences other than those
intended for them. Designers juggle variables, reconcile conflicting
values, and maneuver around constraints — a process in which,
although some design products may be superior to others, there
are no unique right answers.

Donald A. Schon
Educating the Reflective Practitioner
Jossey-Bass, San Francisco, 1987.



Design principles
Many of the principles of good design can be summed up as

» maximize coherence

» minimize coupling

(Why?)



Design Patterns

“Reuse of good ideas”

A pattern is a named, well understood good solution to a common
problem in context.

Experienced designers recognise variants on recurring problems and
understand how to solve them. Without patterns, novices have to
find solutions from first principles.

Patterns help novices to learn by example to behave more like
experts.



Patterns: background and use

Idea comes from architecture (Christopher Alexander): e.g.
Window Place: observe that people need comfortable places to
sit, and like being near windows, so make a comfortable seating
place at a window.

Similarly, there are many commonly arising technical problems in
software design.

Pattern catalogues: for easy reference, and to let designers talk
shorthand. Pattern languages are a bit more...

Patterns also used in: reengineering; project management;
configuration management; etc.



Elements of a pattern
A pattern catalogue entry normally includes roughly:

Name (e.g. Publisher-Subscriber)

Aliases (e.g. Observer, Dependants)

Context (in what circumstances can the problem arise?)
Problem (why won't a naive approach work?)

Solution (normally a mixture of text and models)

vV v vV v v Yy

Consequences (good and bad things about what happens if
you use the pattern.)



A very simple recurring problem

We often want to be able to model tree-like structures of objects:
an object may be a thing without interesting structure — a leaf of
the tree — or it may itself be composed of other objects which in
turn might be leaves or might be composed of other objects...

We want other parts of the program to be able to interact with a
single class, rather than having to understand about the structure
of the tree.

Composite is a design pattern which describes a well-understood
way of doing this.



Example situation

A graphics application has primitive graphic elements like lines,
text strings, circles etc. A client of the application interacts with
these objects in much the same way: for example, it might expect
to be able to instruct such objects to draw themselves, move,
change colour, etc. Probably there should be an interface or an
abstract base class, say Graphics, which describes the common
features of graphics elements, with subclasses Text, Line, etc.

Want to be able to group elements together to form pictures,
which can then be treated as a whole: for example, users expect to
be able to move a composite picture just as they move primitive
elements.



Naive solution
Create a new class, say Container, which contains collection of

Graphics elements.

Rewrite the clients so that instead of blindly sending a draw()
message to a Graphics object, they

1. check whether they are dealing with a container;

2. if so, they get its collection of children and send the message
to each child in turn.



Drawbacks of naive solution

Every client now has to be aware of the Container class and to do
extra work to handle the fact that they might be dealing with a
Container.

And can a Container contain other Containers? Not if we
implement Container and Graphics as unrelated classes with the
Container having a collection of Graphics objects.



Familiar (7) way to do this kind of task in Haskell

data graphicsElement =
Line
| Text
| Circle
| Picture [graphicsElement]

draw Line = —-- whatever
draw Text = —-- whatever
draw Circle = -- whatever

draw (Picture 1) = (let x = map draw 1 in ())



Drawbacks of the Haskell way

Clients must write recursive functions which pattern-match on the
structure of the graphicsElement they have, so all clients do in fact
have to be aware of how elements of the datatype are built up.

But this is just an example of how ML does not support
abstraction as nicely as OOPLs: you can't (straightforwardly) wrap
up the functions that should operate on a graphicsElement along
with the datatype itself.



Composite pattern: best of both worlds

Graphic

draw()

.

Line

Circle

Text

Picture

draw()

draw()

draw()

draw()

forall g

g.draw()




Benefits of Composite

» can automatically have trees of any depth: don’t need to do
anything special to let containers (Pictures) contain other
containers

» clients can be kept simple: they only have to know about one
class, and they don't have to recurse down the tree structure
themselves

> it's easy to add new kinds of Graphics subclasses, including
different kinds of pictures, because clients don’t have to be
altered



Drawbacks of Composite

» It's not easy to write clients which don’t want to deal with
composite pictures: the type system doesn't know the

difference.
(A Picture is no more different from a Line than a Circle is,

from the point of view of the type checker.)

(What could you do about this?)



	Design
	Design patterns

