
Verification, validation and testing

Perdita Stevens

School of Informatics
University of Edinburgh



Verification, validation and testing

These are the main techiques for eliminating all kinds of bugs in
software (including design bugs).

Verification: are we building the software right?

Validation: are we building the right software?

Testing is a useful technique for both.



“Bug”: or more precisely:

From IEEE610.12-90 (IEEE Standard Glossary of Software
Engineering Terminology):

I Error: A difference between a computed result and the correct
result

I Fault: An incorrect step, process, or data definition in a
computer program

I Failure: The [incorrect] result of a fault

I Mistake: A human action that produces an incorrect result

The common term “defect” usually means fault.



Testing

Ways of testing: black box (specification-based) and white box
(structural).

Different testing purposes:

I Module (or unit) testing

I Integration testing

I System testing

I Acceptance testing

I Stress testing

I Performance testing

and many more. i.e., large area: whole third-year course on
testing. Basics only here.



Why test?

Testing has three main purposes:

I to help you find the bugs

I to convince the customer that there are no/few bugs

I to help with system evolution.

Crucial attitude: A successful test is one that finds a bug.



How to test

Tests often have a contractual role. For this and other reasons,
they must be:

I repeatable

I documented (both the tests and the results)

I precise

I done on configuration controlled software

Ideally, test spec should be written at the same time as the
requirements spec: this helps to ensure that the requirements are
highly testable. It may seem backwards to consider testability
when writing requirements but it’s now standard.

E.g. may write requirements in numbered sentences and keep a
tally of which test(s) tests which requirement(s). Use cases may
help structure tests.



Test-first development

Basic idea is to write tests before the code that it’s testing.

When you discover a bug, you ask yourself why none of your tests
revealed the bug. Is there a bug in an existing test? Or do you
need another test?

1. Fix or create a test to catch the bug.

2. Check that the test fails.

3. Fix the bug

4. Run the test that should catch this bug: check it passes

5. Rerun all the tests, in case your fix broke something else.



Advantages of test-first development

If you had a completely explicit, fully detailed specification, there
wouldn’t be nearly so much point in TFD. However, you almost
never do. In the real world:

1. Trying to write a test often reveals that you don’t completely
understand exactly what the code should do. It’s best to find
this our early.

2. If you code first, and requirements are not completely
specified, it’s tempting to settle ambiguities based on what’s
easiest to code. A user doesn’t know or care what’s easy to
code, so this can lead to user-hostile software.

3. Occasionally, you write a test and find that it already passes,
e.g. because you didn’t understand how much your colleague
had already done!

4. If tests are written after the code, then under time pressure
you may end up never writing them. That way lies madness.



Test-driven development

A subtly different term, covers the way that in Extreme
Programming detailed tests replace a written specification.



JUnit

Recall that JUnit is an open-source framework for Java testing.

Now require to do enough investigation of JUnit to be confident
writing basic JUnit tests, as well as understanding ideas of
test-first development. Lots of possible sources, e.g.:

I http://www.junit.org

I Using JUnit with Eclipse IDE http://www.onjava.com/
pub/a/onjava/2004/02/04/juie.html (good introduction,
details may not be quite right for the version we have)

I Writing and running JUnit tests from the Eclipse help
documentation, Java Development User Guide, Getting
Started, Basic Tutorial.

Best way: try it for real on something.

http://www.junit.org
http://www.onjava.com/pub/a/onjava/2004/02/04/juie.html
http://www.onjava.com/pub/a/onjava/2004/02/04/juie.html


Assertions

Assertions allow the Java programmer to do ‘sanity checks’ during
execution of the program.

Suppose i is a integer variable, and we are writing a bit of code
where we ‘know’ that i must be even (because of what we did
earlier). We can write

assert i % 2 == 0;

to check this – if i is odd, an AssertionError exception is raised.

Assertion checking can be switched off. Therefore, never do
anything with side-effects in an assertion.



Preconditions, postconditions, invariants

Particularly common types of assertion about methods and classes
are:

Precondition: a condition that must be true when a method (or
segment of code) is invoked.

Postcondition: a condition that the method guarantees to be true
when it finishes.

Invariant: a condition that should always be true of objects of the
given class.
What does always mean? In all client-visible states: that is,
whenever the object is not executing one of its methods.

Writing these conditions would be tedious – and we might want to
write richer conditions than can be expressed in Java.



Java Modeling Language

The Java Modeling Language is a way of annotating Java
programs with assertions. It uses Javadoc-style special comments.

Preconditions: //@ requires x > 0;

Postconditions: //@ ensures \result % 2 == 0;

Invariants: //@ invariant name.length <= 8;

General assertions: //@ assert i + j = 12;

JML allows many extensions to Java expressions. For example,
quantifiers \forall and \exists. And much, much more.



Tools and further reading

The tools jmlc, jmlrac etc. compile and run JML-annotated Java
code into bytecode with runtime assertion checking. (Quantifiers?)

They got out of date wrt Java, but development now seems to be
active again.

Required/Recommended Reading: Leavens and Cheon ‘Design by
Contract with JML’, via http://www.cs.iastate.edu/

~leavens/JML/documentation.shtml. Section 1 is Required,
the rest is Recommended. You should be able to read and write
simple examples, like those in Section 1.

http://www.cs.iastate.edu/~leavens/JML/documentation.shtml
http://www.cs.iastate.edu/~leavens/JML/documentation.shtml


ESC/Java2 – static analysis for JML

Runtime checking is all very well – but you might never hit the
problem cases.

Static analysis is analysis of source code. Can hope to prove that
assertions are always satisfied, not just check the cases that work.
(But often better to think of it as compile-time debugging!)

ESC/Java2 is a tool for static analysis of JML-annotated programs.
It uses theorem-proving techniques to establish assertions.
However, it is neither sound nor complete (completeness is
theoretically impossible). It also works with Java 1.4.

There are other more rigorous theorem proving environments for
JML which are sound.



Reading

Required: GSWEBOK Ch11, on Software Quality (could delay till
after discussion of process)

Required: some JUnit information, see above.

Required/Suggested: Design by Contract with JML (Section 1
required), see above

Suggested: GSWEBOK Ch5, on Software Testing

Suggested: Sommerville Ch22-24 and/or Stevens Ch19.



Quotes of the day

Beware of bugs in the above code; I have only proved
it correct, not tried it.

(Donald Knuth)

Law 1. Every non-trivial program contains at least one
bug.
Law 2. Every non-trivial program can be simplified by at
least one line of code.

We deduce: Every non trivial program can be
simplified to one line of code, and it will contain a bug.

(Anon)


