
Software component interactions and sequence
diagrams

Perdita Stevens

School of Informatics
University of Edinburgh

What do we need to know? Recap

Recall that this is an overview of software engineering, dipping into
some aspects. We’ve discussed:

I how to analyse requirements and summarise them in a use
case diagram;

I how to tell good design from bad;

I how to record basics of the static structure of our designed
system in a class diagram;

I how to get started with choosing an appropriate static
structure.

We have not discussed dynamic aspects of design: what operations
should our classes have, and what should they do?

Dynamic aspects of design

Suppose that we have decided what classes should be in our
system, provisionally. What next? Well, we have to meet the
requirements...

In the end, we need to know what operations they have, and what
each method should do.

Two ways of looking at this:

1. inter-object behaviour: who sends which messages to whom?

2. intra-object behaviour: what state changes does each object
undergo as it receives messages, and how do they affect its
behaviour?

Complementary: but in this course, we only consider 1. For 2,
UML provides an enhanced variant on the FSMs you saw last year.

For more info, do SEOC next year, and/or read the recommended
texts.

Thinking about inter-object behaviour

There’s no algorithm for constructing a good design. Create one
that’s good according to the design principles...

Your classes should, as far as possible, correspond to domain
concepts.

The data encapsulated in the classes is usually pretty easy to
define using the real world as a model.

Then look at the scenarios in the use cases, and work out where to
put what operations to get them done.

Some of this is easy. Hard parts are usually when several objects
have to collaborate and it isn’t clear which should take overall
responsibility.



CRC cards

Class, Responsibilities, Collaborations

Originally introduced by Kent Beck and Ward Cunningham as an
aid to getting non-OO programmers to “think objects”.

Also useful for validating the class model against the use case
model.

We’ll see how to record much of the information produced using
CRC cards in UML interaction diagrams.

CRC cards are an aid to clear thought, not a formal part of the
design process – though UML does permit you to record the
information from them in the class model, if you wish.

Examples

LibraryMember
Responsibilities Collaborators
Maintain data about copies currently borrowed
Meet requests to borrow and return copies Copy

Copy
Responsibilities Collaborators
Maintain data about a particular copy of a book
Inform corresponding Book when borrowed/returned Book

C, R and C

Class: a well chosen name capturing the essence of the class

Responsibility: what services is this class supposed to provide?
(Given at a more abstract level than operations; check for
coherence and cohesion.)

Collaborators: what services does this class need in order to fulfill
its responsibilities? (Again, at a more abstract level than message
passing: may leave protocol undecided, but check for feasibility
and coupling.)

Refinements of CRC card use

Some people like to use more than the basic C, R, C, e.g. showing:

I sub- and super-classes under the class’s name;

I emerging attributes and other parts on the back of the card;

I a concise definition of the concept represented by the class on
the back of the card.

Yes, there are computer-based CRC card tools. But in fact there’s
value in using the physical cards.



Interaction diagrams

describe the dynamic interactions between objects in the system,
i.e. the pattern of message-passing.

Two main uses:

I Showing how the system realises [part of] a use case

I Showing how an object reacts to some message

Particularly useful where the flow of control is complicated, since
this can’t be deduced from the class model, which is static.

UML has two sorts, sequence and communication diagrams – the
differences are subtle, and we’ll only talk about sequence diagrams.

Developing an interaction diagram

1. Decide exactly what behaviour to model.

2. Check that you know how the system provides the behaviour:
are all the necessary classes and relationships in the class
model?

3. Name the objects which are involved.

4. Identify the sequence of messages which the objects send to
one another.

5. Record this in the syntax of a sequence diagram.

Simple :-)

A collaboration

LibraryMember
Copy

theBook : Book

theCopy :theLibraryMember :

aMember : BookBorrower

Sequence diagram

LibraryMember
theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

okToBorrow

borrow
borrowed

aMember : BookBorrower



Showing more detail

��
��

��
��

��
��
�

��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
�
��
�

��
��

		
		






��
�

��
��








���
�

borrow(theCopy)

borrow
borrowed

:LibraryMember :Copy : Book

okToBorrow

aMember : BookBorrower

Creation/deletion in sequence diagram

n=getName()

:Lecturer

:DirectorOfStudies

:UTO
getName()

new DirectorOfStudies (n)

destroy()

What is a good interaction pattern?

In designing an interaction, your first aim is obviously to design
some collection of operations that can work together to achieve
the aim.

Next, consider:

I conceptual coherence: does it make sense for this class to
have that operation?

I maintainability: which aspects might change, and how hard
will it be to change the interaction accordingly?

I performance: is all the work being done necessary?

Designing interactions

EverythingController

getJC(j:Job) : JobController
1

JobController

1

Job

1

0..*

0..*0..*

Problems?



Law of Demeter

in response to a message m, an object O should send messages
only to the following objects:

1. O itself

2. objects which are sent as arguments to the message m

3. objects which O creates as part of its reaction to m

4. objects which are directly accessible from O, that is, using
values of attributes of O.

More complex sequence diagrams

We’ve only discussed very simple sequence diagrams. UML
provides notation for reusing pieces of interactions, conditional or
iterative behaviour, asynchronous messages, etc. etc.

Reading

Required: The original paper on CRC cards: A Laboratory for
Object-Oriented Thinking, by Kent Beck and Ward
Cunningham. See web page.


	Understanding how components interact
	Recording interactions

