
Construction 2
Configuration, build, unit testing, debugging

Perdita Stevens

School of Informatics
University of Edinburgh



Boring(?) but really useful things

Configuration management means managing all the source code,
object code, compiled code. . . keeping track of changes, allowing
developers to cooperate, automatic building, etc. etc. Version
control is a fundamental part of this task. We’ll also talk about
build tools.

Testing of various kinds is an essential ingredient of software
engineering. Test your components (unit testing); test that they
work together (system testing); when you change something, check
that everything still works (regression testing), . . .

Debugging sometimes has to be done . . . how?

Naturally Eclipse provides support for all of these.



Software configuration management

1. Version control tools are important even to individual
programmers (you should be using VC on all your
assignments, written or coded!)

2. Configuration management tools have additional features to
support teams

3. There’s more to software configuration management than
picking a tool.



Version control

is the core of configuration management.

I keep copies of every version (every edit?) of files

I provide change logs

I somehow manage situation where several people want to edit
the same file

I provide diffs/deltas between versions

I etc.



Local history in Eclipse

Eclipse has built in to its core a very simple version control system.
Eclipse keeps local history for each file: copy of file every time it is
saved. Can compare or restore versions.

For details and how to use, see Eclipse help page,
Workbench User Guide : Concepts : Workbench : Local history



RCS

RCS is an old, primitive VC system, much used on Unix.

Suitable for small projects, where only one person works on a file
at a time.

Works by locking files, preventing check-out by other developers.
Check in files when done editing – changes now available to others.
Lock-Modify-Unlock model.

Keeps deltas between versions; can restore, compare, etc. Can
manage multiple branches of development.

Remains a very useful tool for personal projects – and articles,
lectures, essays, etc.

RCS is included in all Unix/Linux distributions.

Further reading: man rcsintro on DICE.



RCS

RCS is an old, primitive VC system, much used on Unix.

Suitable for small projects, where only one person works on a file
at a time.

Works by locking files, preventing check-out by other developers.
Check in files when done editing – changes now available to others.
Lock-Modify-Unlock model.

Keeps deltas between versions; can restore, compare, etc. Can
manage multiple branches of development.

Remains a very useful tool for personal projects – and articles,
lectures, essays, etc.

RCS is included in all Unix/Linux distributions.

Further reading: man rcsintro on DICE.



RCS

RCS is an old, primitive VC system, much used on Unix.

Suitable for small projects, where only one person works on a file
at a time.

Works by locking files, preventing check-out by other developers.
Check in files when done editing – changes now available to others.
Lock-Modify-Unlock model.

Keeps deltas between versions; can restore, compare, etc. Can
manage multiple branches of development.

Remains a very useful tool for personal projects – and articles,
lectures, essays, etc.

RCS is included in all Unix/Linux distributions.

Further reading: man rcsintro on DICE.



RCS

RCS is an old, primitive VC system, much used on Unix.

Suitable for small projects, where only one person works on a file
at a time.

Works by locking files, preventing check-out by other developers.
Check in files when done editing – changes now available to others.
Lock-Modify-Unlock model.

Keeps deltas between versions; can restore, compare, etc. Can
manage multiple branches of development.

Remains a very useful tool for personal projects – and articles,
lectures, essays, etc.

RCS is included in all Unix/Linux distributions.

Further reading: man rcsintro on DICE.



CVS and SVN

CVS is a much richer system, (originally) based on RCS.
Subversion (SVN) very similar.

Handles entire directory hierarchies or projects – keeps a single
master repository for project.

Is designed for use by multiple developers working simultaneously –
Copy-Modify-Merge model replaces Lock-Modify-Unlock.

If conflicting updates are checked in, CVS automatically merges
changes, if it can. Otherwise flags problem to second user.

Pattern of use: check out entire project (or subdirectory) (not
individual files). Edit files. Do update to get latest versions of
everything from repository and check for conflicting updates.
Check in your edits.

Central repository may be on local filesystem, or remote.

Many additional features.



CVS and SVN

CVS is a much richer system, (originally) based on RCS.
Subversion (SVN) very similar.

Handles entire directory hierarchies or projects – keeps a single
master repository for project.

Is designed for use by multiple developers working simultaneously –
Copy-Modify-Merge model replaces Lock-Modify-Unlock.

If conflicting updates are checked in, CVS automatically merges
changes, if it can. Otherwise flags problem to second user.

Pattern of use: check out entire project (or subdirectory) (not
individual files). Edit files. Do update to get latest versions of
everything from repository and check for conflicting updates.
Check in your edits.

Central repository may be on local filesystem, or remote.

Many additional features.



CVS and SVN

CVS is a much richer system, (originally) based on RCS.
Subversion (SVN) very similar.

Handles entire directory hierarchies or projects – keeps a single
master repository for project.

Is designed for use by multiple developers working simultaneously –
Copy-Modify-Merge model replaces Lock-Modify-Unlock.

If conflicting updates are checked in, CVS automatically merges
changes, if it can. Otherwise flags problem to second user.

Pattern of use: check out entire project (or subdirectory) (not
individual files). Edit files. Do update to get latest versions of
everything from repository and check for conflicting updates.
Check in your edits.

Central repository may be on local filesystem, or remote.

Many additional features.



CVS and SVN

CVS is a much richer system, (originally) based on RCS.
Subversion (SVN) very similar.

Handles entire directory hierarchies or projects – keeps a single
master repository for project.

Is designed for use by multiple developers working simultaneously –
Copy-Modify-Merge model replaces Lock-Modify-Unlock.

If conflicting updates are checked in, CVS automatically merges
changes, if it can. Otherwise flags problem to second user.

Pattern of use: check out entire project (or subdirectory) (not
individual files). Edit files. Do update to get latest versions of
everything from repository and check for conflicting updates.
Check in your edits.

Central repository may be on local filesystem, or remote.

Many additional features.



Distributed version control

e.g. Darcs, Git, Bazaar, Mercurial.

All the version control tools we’ve talked about so far use a single
central repository: so, e.g., you cannot check changes in unless you
can connect to its host, and have permission to check in.

Distributed version control systems allow many repositories of the
same software to be managed, merged, etc.

I + reduces dependence on single physical node

I + allows people to work (including check in, with log
comments etc.) while disconnected

I + much faster VC operations

I + makes it easier to republish versions of software

I − much more complicated, harder to understand



Basics of branches and releases

Use a CM branch when there’s a good reason to maintain two
versions of the same item.

Releases are configurations packaged and released to users.

alpha release for friendly testers only: may still be buggy, but
maybe you want feedback on some particular thing

beta release for any brave user: may still have more bugs than a
real release

release candidate sometimes used (e.g. by Microsoft) for
something which will be a real release unless fatal bugs are found

minor release e.g. 2.11 replacing 2.10: basically same functionality,
somehow improved

major release e.g. 3.0 replacing 2.11: significantly new features.

Variants, e.g. even (stable) versus odd (development) releases...



Software configuration management process

Key activities (from SWEBOK Ch7):

I software configuration identification – what needs to be
controlled, what are the relationships, what constitutes a
release?

I software configuration control – processes for agreeing to
make a change (see later lecture on Deployment and
Maintenance)

I software configuration status accounting – where’s the
product at? what’s in the latest release [but 1!]? how fast are
change requests being dealt with?

I software configuration auditing – is it actually being done
right?

I software release management and delivery – we’ll talk about
build tools, but see also later lecture on Deployment and
Maintenance.



Dependencies

Much of software engineering can be seen as managing
dependencies, in the most general sense:

A depends on B if, when B changes, it’s possible A may need to
change as a consequence

Some of this is captured in the software configuration identification
(how much depends on just how you do that).

Some is general, e.g., Foo.class will depend on Foo.java.

If the change that may be forced is, e.g., a change to the code, a
human will have to make it.

If it’s just that something needs to be recompiled, we can
automate it provided a tool has the dependency information.



Build tools

Given a large program in many different files, classes, etc., how do
you ensure that you recompile one piece of code when another
than it depends on changes?

On Unix (and many other systems) the make command handles
this, driven by a Makefile. Used for C, C++ and other ‘traditional’
languages (but not language dependent).



part of a Makefile for a C program

OBJS = ppmtomd.o mddata.o photocolcor.o vphotocolcor.o dyesubcolcor.o

ppmtomd: $(OBJS)

$(CC) -o ppmtomd $(OBJS) $(LDLIBS) -lpnm -lppm -lpgm -lpbm -lm

ppmtomd.o: ppmtomd.c mddata.h

$(CC) $(CDEBUGFLAGS) -W -c ppmtomd.c

mddata.o: mddata.c mddata.h

Makefiles list the dependencies between files, and the commands
to execute when a depended-upon file is newer.

make has many baroque features – and exists in many versions.
(Just use GNU Make.)

Like version control, a Makefile is something every C program
should have if you want to stay sane.



Ant

make can be used for Java.

However, there is a pure Java build tool called Ant.

Ant Buildfiles are XML files, specifying the same kind of
information as make.

There is an Eclipse plugin for Ant.



part of an Ant buildfile for a Java program

<?xml version="1.0" encoding="ISO-8859-1"?>

<project name ="Dizzy" default = "run" basedir=".">

<description>

This is an Ant build script for the Dizzy chemical simulator. [...]

</description>

<!-- Main directories -->

<property name = "source" location = "${basedir}/src"/> [...]

<!--General classpath for compilation and execution-->

<path id="base.classpath">

<pathelement location = "${lib}/SBWCore.jar"/> [...]

</path> [...]

<target name = "run" description = "runs Dizzy" depends =" compile, jar">

<java classname="org.systemsbiology.chem.app.MainApp" fork="true">

<classpath refid="run.classpath" />

<arg value="." />

</java>

</target> [...]

</project>



Per-platform code configuration

Different operating systems and different computers require code
to be written differently. (Incompatible APIs. . . ). Writing portable
code in C (etc.) is hard.

Tools such as GNU Autoconf provide ways to automatically extract
information about a system. The developer writes a (possibly
complex) configuration file; the user just runs a shell script
produced by autoconf.

(Canonical way to install Unix software from source:
./configure; make; make install.)

Problem is less severe with Java. (Why?) But still tricky to write
code working with all Java dialects.



Testing

is vital. And not just at the end!

(Unit) Tests should be written before the code – a mantra from
Extreme Programming, but widely accepted.

More about testing later on – but do it now!



JUnit

JUnit is a simple framework for writing unit tests for Java
programs.

For each class, write a test class which exercises methods and
checks for correct functioning.

The framework makes it easy to run all tests frequently (many
times per day).

For now, see junit.org for more information and introductory
tutorial.

Eclipse has a plug-in to integrate JUnit.



Debugging

When tests fail, you’ll probably have to debug.

Revise Inf1 lab on the Java debugger included with Eclipse.



When your attempt at debugging fails

You run your code inside a debugger; it still does something wrong;
you don’t understand why. Now what?

Some strategies to hone (in no particular order):

1. RTFM

2. isolate the bug: make the smallest, simplest subset of your
code that still exhibits the problem, and then debug that

3. google for someone else having the same problem (especially
good if you get an obscure error message from a widely used
thing: if you don’t understand it, there’ll be others who’ve
asked about it)

4. explain to a friend, in great detail, why your code should work
– they usually won’t have to say anything, or even listen!

5. ask someone, or post to a newsgroup (with your small simple
example)

6. think of another way to do it

7. work on something else instead for now



Reading

Required: Chapter 1, Fundamental Concepts, of the SVN book
http://svnbook.red-bean.com/

Suggested: man rcsintro

Suggested: Eclipse Team Programming with CVS (see above)

Suggested: browse http://www.junit.org.

http://svnbook.red-bean.com/
http://www.junit.org


Skills

Make sure you can:

I use SVN or CVS to retrieve a copy of a Sourceforge etc.
project

I set up and use some kind of version control on your own
projects, e.g. assignments

I debug a Java program in Eclipse

I (need not be this week) write and run JUnit unit tests for a
Java program

I build a project that uses a makefile or Ant build script

I (optional) understand and write makefiles and Ant build
scripts.



Quote of the day

Program testing can be used to show the presence of
bugs, but never to show their absence!

Edsger Dijkstra


