
Extreme Programming, an agile software
development process

Perdita Stevens

School of Informatics
University of Edinburgh



Agile processes

What the spiral models were reaching towards was that software
development has to be agile: able to react quickly to change.

The Agile Manifesto http://agilemanifesto.org:

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to
value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

We’ll now look in more detail at one agile process, XP.

http://agilemanifesto.org


Extreme Programming

Extreme Programming (XP) is

“a humanistic discipline of software development, based on values
of communication, simplicity, feedback and courage”

People: Kent Beck, Ward Cunningham, Ron Jeffries, Martin Fowler,

Erich Gamma...

More info: www.extremeprogramming.org,
Beck “Extreme Programming Explained: Embrace Change”



Risk: The Basic Problem

I schedule slips

I project cancelled

I system goes sour

I defect rate

I business misunderstood

I false feature rich

I staff turnover

“Use XP when requirements are vague or changing”



Key insight of XP

Traditional methodologies are that way because

the cost of coping with a requirements change or correcting a
defect rises exponentially through the development lifecycle

– but what if it needn’t be so? Then it is possible to be much
more flexible.

Keeping that cost down is partly luck (i.e. being in the kind of
project where it’s possible to do so) and partly judgement (e.g.,
following those of XP’s practices, like refactoring, which help to
make it so).



XP classification of software development activities

I coding

I testing

I listening

I designing

Illuminating exercise: map these onto “standard” activities and
contemplate implications of differences.



XP Practices

The Planning Game
Small releases
Metaphor
Simple design
Testing
Refactoring
Pair programming
Collective ownership
Continuous integration
40-hour week
On-site customer
Coding standards



The Planning Game

Played with user story cards.

I Release planning game – customer and developers

I Iteration planning game – just developers

Customer understands scope, priority, business needs for releases:
sorts cards by priority.

Developers understand risk, estimating: sorts cards by risk.

“Game” captures, e.g., that you can’t make a total release in less
than the sum of the times it’s going to take to do all the bits:
that’s against the rules.



On-site customer

A customer – someone capable of making the business’s decisions
in the planning game – sits with the development team (maybe
doing their normal work when not needed to interact with the
development team), always ready to clarify, write functional tests,
make small-scale priority and scope decisions.



Small releases

Release as frequently as is possible whilst still adding some
business value in each release. This ensures that you get feedback
as soon as possible and lets the customer have the most essential
functionality asap. (May be talking about every week to every
month – outside XP each 6 months would be more usual even in
an iterative project, longer not uncommon.)



Metaphor

Is basically XP’s word for part of what other people call
architecture – it avoids the word architecture to emphasise that it
doesn’t just mean the overall structure of the system. “Metaphor”
is intended to suggest an overarching coherence, easily
communicated.



Continuous integration

Code is integrated and tested at most a few hours or one day after
being written. E.g. when a pair wants to checkpoint they go to an
integration machine, integrate and fix any bugs against the latest
full build, add their changes to the central CM database.



Simple design

Motto: do the simplest thing that could possibly work. Don’t
design for tomorrow: you might not need it.



Testing

Test everything that could break. Programmers write unit tests
using a good automated testing framework (e.g. JUnit) to
minimise the effort of writing running and checking tests.
Customers, with developer help, write functional tests.



Refactoring

As we discussed before: but here refactoring is especially vital
because of the way XP dives almost straight into coding. Later
redesign is vital. A maxim for not getting buried in refactoring is
“Three strikes and you refactor”: For example, consider removing
code duplication.

1. The first time you need some piece of code you just write it.

2. The second time, you curse but probably duplicate it anyway.

3. The third time, you refactor and use the shared code.

i.e. do refactorings that you know are beneficial

(NB you have to know about the duplication and have
“permission” to fix it... ownership in common)



Pair programming

All production code is written by two people at one machine. You
pair with different people on the team and take each role at
different times.

There are two roles in each pair. One partner, the one
with the keyboard and the mouse, is thinking about the
best way to implement this method right here. The other
partner is thinking more strategically about:

I Is this whole approach going to work?
I What are some other test cases that might not work

yet?
I Is there some way to simplify the whole system so

the current problem just disappears?



Collective ownership

i.e. you don’t have “your modules” which no-one else is allowed to
touch. If any pair sees a way to improve the design of the whole
system they don’t need anyone else’s permission to go ahead and
make all the necessary changes. Of course a good configuration
management tool is vital.



Coding standards

The whole team adheres to a single set of conventions about how
code is written (in order to make pair programming and collective
ownership work).



Sustainable pace

aka 40 hour week, but this means not 60, rather than not 35!

People need to be rested to work effectively in the way XP
prescribes. There might be a week coming up to deadlines when
people had to work more than this, but there shouldn’t be two
consecutive such weeks.



Mix and match?

Can you use just some of the XP practices?

Maybe... but they are very interrelated, so it’s dangerous.

E.g., if you do collective ownership but not coding standards, the
code will end up a mess;

if you do simple design but not refactoring, you’ll get stuck!



Where is XP applicable?

The scope of situations in which XP is appropriate is somewhat
controversial.

I there are documentated cases where it has worked well for
development in-house of custom software for a given
organisation (e.g. Chrysler).

I A decade ago I wrote “it seems clear to me that it wouldn’t
work for Microsoft: big releases are an essential part of the
business; even the frequency of updates they do use annoys
people.” Now of course we have automated updates to OSs,
Microsoft is a Gold Sponsor of a 2008 Agile conference...

XP does need: team in one place, customer on site, etc. “Agile” is
broader.


