
Inf2C (Computer Systems) - 2008-2009 1

Lecture 2: Data Representation

  Data need to be represented in a convenient way
 that simplifies:
–  common operations: addition, comparison, etc.

 How would an algorithm for adding Roman numbers look
 like?

–  hardware implementation (cheap, fast, reliable
 computers)

  Data representation is a major part of the
 software-hardware interface

Inf2C (Computer Systems) - 2008-2009 2

Lecture outline

  The bit – atomic unit of data
  Representing numbers
  Representing text

Inf2C (Computer Systems) - 2008-2009 3

The bit

  Acronym for Binary digiT
  The smallest amount of meaningful info,

 according to information theory
–  If only 1 value is possible, there is no information

  Disadvantages: too little information per bit,
 must use many of them

  Advantages: easy to do computation, very
 reliable, simple circuits

Inf2C (Computer Systems) - 2008-2009 4

Natural numbers representation

  Positive (unsigned) integers are very simple to
 represent in binary

n-1 Bit position
MSB

n-2 1 0
Binary:

Decimal: *2n-1+ *2n-2+ *21+ *20

LSB

Most significant bit Least significant bit

Inf2C (Computer Systems) - 2008-2009 5

Basic operations

 01101
+01011

00011

1 1 1 1

  Addition, subtraction with binary numbers is
 easy:

 01101
－01011

10000

0 1 0 0

13

11

24
2

Inf2C (Computer Systems) - 2008-2009 6

Fixed bit-length arithmetic

  Hardware cannot handle infinite long bit
 sequences

  We end up with a few fixed sized data types
– Byte: always 8 bits
– Word: the ‘natural’ unit of access, usually 32 bits

  Overflow happens when a result does not fit
– Numbers wrap-around when they become too large
– Comp. arithmetic is modulo 2n, n=number of bits

Inf2C (Computer Systems) - 2008-2009 7

What about negative numbers?

  No special symbols, e.g. +, －, available
  Sign-magnitude representation:

– Use 1st bit (MSB) as the sign: 1-negative, 0-positive

  Complicates the arithmetic operations
– The actual operation depends on the sign

  There is a better way

Inf2C (Computer Systems) - 2008-2009 8

Two’s complement representation

  What is the result of 000 – 001?
…111

  The MSB has negative weighting:
n-1 n-2 1 0

Binary:

Decimal: － *2n-1+ *2n-2+ *21+ *20

  Arithmetic operations do not depend on the
 operands’ signs

Inf2C (Computer Systems) - 2008-2009 9

2’s complement quirks

  The MSB is the sign
  Range is asymmetric: －2n-1 to 2n-1-1
  There are two kinds of overflows:

– Positive overflow produces a negative number
– Negative underflow produces a positive number

  To negate a number
Invert all bits (0 ↔ 1) and add 1, at the LSB
－(－2n-1) overflows!

  A-B = A + 2’s complement of B

Inf2C (Computer Systems) - 2008-2009 10

Converting between data types

  Converting from a smaller to a larger representation is
 done by sign extension

Example: from byte to short (16 bits):

-2 = 11111110 ⇒ 1111111111111110

(byte) (short)

2 = 00000010 ⇒ 0000000000000010

(byte) (short)

-2 = 1 1 1 1 1 1 1 0 ⇒ ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 0

2 = 0 0 0 0 0 0 1 0 ⇒ ? ? ? ? ? ? ? ? 0 0 0 0 0 0 1 0

Inf2C (Computer Systems) - 2008-2009 11

Shifting

  Shifting: move the bits of a data type left or right
–  Data bits falling off the edge are lost

  0s fill up the empty bit places for left shifts
  For right shifts, two options:

–  Fill with 0: for non-numerical data (or positive integers)
–  Fill with the MSB: for 2’s complement numbers

  Shift left by n is equivalent to multiplying by 2n

  Shift right by n is equivalent to dividing by 2n
  Example

-8 = 1 1 1 1 1 0 0 0 >> 2  1 1 1 1 1 1 1 0 = -2
6 = 0 0 0 0 0 1 1 0 >> 2  0 0 0 0 0 0 0 1 = 1

Inf2C (Computer Systems) - 2008-2009 12

Hexadecimal notation

  Binary numbers (and other data) are too long and
 tedious for us to use

  Hexadecimal (base 16) is very commonly used in
 computer programming

  Hex digits: 0-9 and A-F
–  A=10, B=11, …, F=15

  Conversion to/from binary is very easy:
Every 4 bits correspond to 1 hex digit:

Hex is just a convenience, computers use the binary form

1 1 1 1 1 0 0 0

F(15) 8

= 0xF8

Inf2C (Computer Systems) - 2008-2009 13

Real numbers - floating point
  Java’s

  IEEE 754:
–  example 0.75 in base 10 ⇒ 0.11 in base 2

–  Normalized:
 0.11 ⇒ 1.1x2-1

–  example: 25 in base 10 ⇒ 11001 in base 2 ⇒ 1.1001x24

float (32 bits)
double (64 bits)

mantissa exponent

implict
(always 1)

(2-1 + 2-2 = 0.5 + 0.25 = 0.75)

Inf2C (Computer Systems) - 2008-2009 14

Floating Point
  32 bit:

e.g.,
(0.75)10 → (0.11)2 → (1.1x2-1)2 → 0 01111110 10000000000000000000000

  64 bit:
–  exponent = 11 bits; significand = 52 bits

  Note: processors usually have specialized floating point units and
 extra fp registers to perform fp arithmetic

31 30 22 0

sign
(s)

exponent
(exp)

mantissa or significand
(sig)

(-1)s x (1.sig) x 2exp-127

23

Inf2C (Computer Systems) - 2008-2009 15

Representing characters, strings

  Characters need to be encoded in binary too
  Operations on characters have simpler requirements

 than on numbers, so the encoding choice is not crucial
  Most common representation is ASCII

–  Each character is held in a byte
–  E.g. ‘0’ is 0x30, ‘A’ is 0x41, ‘a’ is 0x61

  Java uses Unicode which can encode characters from
 many (all?) languages
–  16 bits per character required

  Words, sentences, etc. are just strings of characters
–  A special character, encoded as 0x00, shows where the string

 ends (in C)
–  Or the string length is kept with the string itself (in Java)

Inf2C (Computer Systems) - 2008-2009 16

Summary

  Computers use binary representation
  2’s complement
  Floating point
  Characters and strings

