Inf2C tutorial SE2: Writing Good Code, plus a little design

Study this tutorial sheet and prepare your answers BEFORE the tutorial. Take
a copy of this sheet with you to the tutorial.

1 Criticising and improving code

If necessary revise the slides of the lecture Construction: writing good code. Read the Ap-
pendix to this tutorial note for a few further ideas of problems that a code review would
typically look out for. With these criteria in mind:

1. Try to find some code in your project (the one you're doing the assignment on) that
you think could be improved.

2. Go back to a piece of (preferably Java) code you've written in Infl or Inf2. Can it be
improved? How?

Take with you to the tutorial one or more printed pages of code (take several copies, so
that everyone can see) with things you think could be improved highlighted. Be prepared to
explain to the group what you think the problem is, and if possible, to suggest improvements.

In your group, discuss how each piece of code should be improved. Are there problems
not identified by the person who brought the code? Do you all agree or are there interesting
differences of opinion? Are there places where you simply can’t tell what change is needed?
Who has brought the worst piece of code?

2 Question adapted from Aug 07 exam

1. List four principles of good design, explaining in a sentence what each one means. (4
marks)

2. What does BDUF stand for and, in one sentence, what does it mean? (2 marks)

Imagine that you are choosing the classes which should appear in a system for this
university. You know that you will need objects representing;:
e Paul Jackson
Nigel Goddard
the School of Informatics
the School of Physics
the School of Chemistry



e the College of Science and Engineering
e the Institute for Communicating and Collaborating Systems (ICCS)
e the Institute for Computing Systems Architecture (ICSA)

In the real world (simplified), Colleges are composed of Schools, which are composed
of Institutes. Any School is in exactly one College, and any Institute is in exactly one
School. ICCS and ICSA are in Informatics, and all three of the Schools mentioned
are in the College of Science and Engineering. A member of staff is in zero or more
Institutes, and in exactly one school and in exactly one college. Any member of staff is
regarded as being a member of any organisational unit which includes one of which they
are a member. In particular, Paul is a member of ICSA, and therefore automatically
a member of Informatics and of the College of Science and Engineering. Nigel is not a
member of either of the listed institutes, but is a member of the School of Informatics
and hence of the College of Science and Engineering.

. Draw a UML object diagram showing the objects listed above and the conceptual links
between them. Omit class names, since the classes have not yet been decided. (3 marks)

One of your colleagues proposes that the classes should be College, School, Institute and
MemberOfStaff.

Another colleague argues that this solution does not allow for future changes in univer-
sity structure. He proposes classes MemberOfStaff, OrganizationalUnit (with an attribute
kind which can have values “institute”, “school” or “college”) and Entity (with an at-
tribute telephoneNumber). Note for tutorial: this adapted version is harder for you than
the original was for the erxaminees, who had seen a design very similar to this with a
standard name, the Composite pattern. But see if you can work it out... the key idea
1s that OrganizationalUnits should be able to contain both MemberOfStaffs, and other
OrganizationalUnits, which should be able to contain... etc., to arbitrary depth.

. Draw UML class diagrams to illustrate both solutions. Include attributes and multi-
plicities where they can be deduced from the above, commenting briefly on any issues
which arise. (10 marks)

. Discuss the relative merits of the two solutions. What will you need to find out about
the system and its environment, in order to know which is better? Note for tutorial:
feel free to open this up further, e.g., consider other design possibilities if you can think
of some. (6 marks)



Appendix: Code inspection checklist

In a code review, a group of people study a section of code looking for possible problems with
it — ways in which it might not be doing what it should now, or ways in which it might be
hard to maintain in future. A few of the things a code review will look for are:

1. A one- or two-sentence description of each public method and class, possibly in Javadoc.
(If it’s not possible to summarise the functionality in one or two sentences, the method
or class may be doing several unrelated things and may need to be split.)

2. Bad smells in the code (see next section)
3. Bad names (of classes, methods, attributes etc.), including:

e names that don’t explain what the thing is, e.g. ¢

e names that don’t adhere to coding standards (e.g. universal convention in Java: all
classes start with a capital letter e.g. Customer, all instance variables and methods
with lower case, e.g. balance, getBalance);

e names that include type names, e.g. customerArray (exercise: why?). More
subtly, order.add (item) is better than order.addItem(item): if you trust people
to name their variables meaningfully, you can avoid redundancy in your names.

4. Off-by-one errors in for loops.

5. Objects compared using == instead of equals (the latter is almost always what’s
wanted).

6. Possible dereferencing of null pointers.

7. Exceptions: are they all properly handled, not by blank catch sections that should have
something in them?

8. Resource problems: e.g. are the acquisition and release of locks, database handles etc.
correct?

9. Unit tests: are all present that should be? Are they correct?

Bad smells in code

Sometimes code “smells bad” — there’s something about it that will make an experienced
developer suspect that it’s of poor quality, even before looking at what it’s supposed to do.
Kent Beck and Martin Fowler have identified a collection of “bad smells” in code. Here are
a few of them.

Comments Comments at the beginning of a method that specify what a method does, e.g. in
Javadoc, are not a bad smell, but a method which is densely commented inside its code
is suspicious. Often it’s a sign that the code is hard to read — could it be improved? A
block of comment explaining what the next section of the method does often indicates
a section of code that would be better separated out into its own method (with the
comments then becoming the (Javadoc) specification of that method. A comment that



explains what should be true at a point in the code should be replaced with a Java
assertion. Good uses for comments (within reason) include noting when you’re not sure
whether to do something one way or another way, or explaining why you’ve decided to
do it this way instead of some other way that might have seemed more obvious.

Long method Methods in a good object-oriented program almost always fit onto one screen:
many methods will be just a few lines. This makes the code easier to understand and
reuse, provided that you use well-chosen method names, which explain what the method
does. If a method is long, look for ways to simplify and restructure it, usually by
separating out part of the code (the body of a loop? an if or else clause? a not-very-
closely-connected chunk?) into its own method. This smell often goes with the one
above. E.g., if the code of a long method has a comment “Next we wizzle the froboz”,
it’s probably best to separate out the next chunk of code into a separate (private)
method, maybe called wibbleFroboz: then calling the method replaces the comment.
It’s OK if wibbleFroboz is only called this once, but if you pick meaningful chunks of
functionality to separate out in this way, you often will find that they’re needed again
later.

Long parameter list It’s hard to remember a long list of parameters to a method and what
order they go in. Using global variables is worse, of course (why?) — but think twice
about passing in something that the method could compute. E.g., don’t pass in two
parameters which will be got from the same object: pass the object in instead, and let
the method get both pieces of data when it needs them.

Duplicated code Or, just as common and more difficult to deal with, nearly duplicated
code. Is there a reason for the differences? (Or is it a mistake that they’re not exactly
the same?) Can you replace the nearly duplicated code by a private method, maybe
with a parameter to account for the variants?

Large class Look at the largest class in your system — by any metric, e.g. most lines of code,
most instance variables, most methods. Is it coherent, or would it be clearer to split it
into more than one class? Is there code duplication?

Switch statements Java has a switch statement, but it’s almost always the wrong way to
solve the problem. Could polymorphism do the job instead?

Speculative generality E.g., methods that don’t actually do anything but are placeholders
for maybe doing something in future, or parameters that aren’t yet used. They add
complication for no value: if they ever are needed, it’s easy enough to add them then.
Keep it simple. You Ain’t Gonna Need It.



