Tutorial 3 Solution Guidelines: Inf2C-SE 2014 /2015

Friday 17* October, 2014

1 Activity Diagrams

1. When and why would you use an activity diagram rather than a sequence diagram?

Answer: When you are describing flow from one system to another. Another important
distinction is that a sequence diagram typically describes the flow of exactly one use-
case. Whereas an activity diagram may describe the flow of several use-cases, particularly
those that interact with one another. In addition a sequence diagram typically requires a
corresponding use-diagram but an activity diagram may be used independently.

2. What is the main way in which an activity diagram is differentiated from a flow chart?

Answer: The main difference is that activity diagrams can show parallel and concurrent
activities. Many display some skepticism towards their use describing them as glorified
flow charts. They are relatively easy to understand however. A glorified flow chart should
at least be useful in any situation that a flow chart is.

2 State Machines

1. States in a state machine diagram may refer to the states of a single object or a collection
of objects. Unfortunately, when we have a collection of objects the number of possible
states can increase dramatically. If you have n components each with m states, then the
total number of possible states is m™. More generally each component may have a different
number of states, so if each component 7 has m; states, and there are n components, then
there are sz? m; total possible states. If we have just 8 components each with just 2
independent states we have 256 possible states. Why is this not normally a major problem
for modelling?

Answer: There are a few reasons. The first is that for a state machine you are only
modelling the significant states. Hence, it is hopefully the case that for most components
m; = 1. Even, where m; > 1, hopefully the states of each modelled component are not
independent from each other. So for example, either all components are in some ‘recovery’
state or none are. Finally, if the states of components really are independent from each
other, then their behaviour should be too. In this case, you can model them separately
from each other (even if on the same diagram), such that you need only depict in the
independent states of each component, rather than any combined state.

2. Suppose then that you are taking part in some project and a co-developer comes to you
with a state machine diagram with a number of states far higher than you were expecting
for the size of system you are developing. What might this indicate?

Driver Control -
\ J
Cruise[Speed=30]| Resumse
/SaveSpeed [Speed=>30] Brake
Cruise Control
do/MaintainSpeed
J
Accelerate
Y End Accelerate
Accelerating h
do/MaintainSpeed Brake
do/IncreaseSpeed)

Figure 1: A state machine diagram from the cruise-control system.

Answer: The question is a little vague so I suspect there will be a variety of answers
here. But the main concept here is that either there is something wrong with the model
or something wrong with the design. So first check that the model is reasonable. A
likely place it might not be is that the co-developer has modelled too many insignificant
states. For example in the thermostat system, we do not require a state for each different
temperature of each room. We do not even need a state for each room being above or
below the desired temperature. We simply require two states, one in which at least one
room is below the desired temperature and one in which there is no such room.

However, if you decide that the modeller has indeed done a good job, then it might be
that the system you are designing has a poor design. The number of significant states
should be manageable by a human reader, in particular by the user/customer. If you have
a large number of states each with qualitatively different behaviour then you will have a
difficult time verifying the correctness of each state. Even if you implement this correctly
you may have a system which is difficult for the user.

Finally of course, the scenario includes a large amount of scope for interpretation. It
includes the phrase “far higher than you were expecting” but this is of course a function of
your expectations as well as of the model. It may well be that you are developing a complex
system, in which case, perhaps you require many states with significantly /qualitatively
different behaviour.

3. Draw a state machine for the Cruise Control System as described in the first and second
courseworks.

Answer: See the answer if Figure 1.

3 Design Patterns

1. Design patterns suggest that you copy an existing solution and modify it correspondingly
for your specific application. One thing novice programmers are taught is that “Copy-
and-paste” programming is to be avoided. Worst still, you may apply the same design
pattern more than once in the same project. Isn’t this a good argument to avoid the use
of design patterns?

Answer: Yes we try to avoid duplication, and yes the application is of a design pattern
is necessarily the duplication of some logic. It may not be a direct copy-and-paste, the

duplication may be of the more abstract logic than of the actual concrete syntax used,
but it is duplication nevertheless. However, the design pattern has arisen because, at least
the authors, see no obvious way to write down the solution in a resuable/parameterised
way. That is why the problem is a problem in the first place.

. If you agree that the main advantage to the use of design patterns is as an aid to communi-
cation with other developers. Is there any value in using design patterns for an individual
project? If you believe that you will only ever write programs that no one else will read
(which is a sad thought), is there any benefit to learning design patterns?

Answer: One obvious benefit is that you are able to draw on the thoughts of other expert
software developers regarding the general advantages and disadvantages to the use of each
particular design pattern use and apply those to your current situation.

. Some programming languages have existing features that subsumes the need for particular
design patterns. For example many dynamically typed languages (and some statically
typed languages/variants) have a provision for ‘MetaClasses’ and this largely obviates
the need for the Factory pattern. Do you think that this means that the concept of a
design pattern is not a useful one?

Answer: Well, it may well be that a particular design pattern is subsumed by some
language feature in another language. However, if the language you are currently using
does not support that feature, then you need a plan for what you are doing now.

The use of a particular design pattern may well be the best approach. You might consider
switching implementation languages if that is an option, or you might consider proactively
contributing some effort towards the introduction of that particular feature for the pro-
gramming language that you are using. Though that will likely not affect your current
course of action. It may be that such a feature is simply infeasible to be included into the
particular language you have chosen.

Finally, even if some particular design patterns are indeed subsumed by existing language
features, this does not invalidate the concept of a design pattern. The concept can be
thought of as capturing a recurring solution for which there is no current language feature.
Whatever your opinion of the existing one, you would need a very strong opinion of the
expressivity of abstraction of some programming to claim that it could never benefit from
such a concept.

