
Inf2C-SE 2014/2015, Tutorial 2 for week 4

Monday 6th October, 2014

Similar to the first tutorial, you can attempt these questions before your tutorial then your
time at the tutorial may be more beneficial, spent discussing your solutions with your fellow
students and tutor. Alternatively these exercises can be done within your tutorial. In both
cases working in pairs or groups is encouraged.

1 Introduction

In this tutorial you will develop some of the example scenarios from the previous tutorial in to
class diagrams. Recall the three systems presented in the first tutorial and reshown here below.
For each

1.1 Thermostat - Basic

A thermostat is a simple system to control the temperature in a heated home. The user sets
the desired temperature, if any (monitored) room in the house is below that temperature the
heating is turned on. When all monitored rooms are above the desired temperature the heating
is turned off.

Design some use-case and requirements specifications to handle this system. Take note of
what happens when the user first starts the system, and also when the user changes the desired
temperature.

1.2 Elevator - Basic

We have all used elevators before. Consider a single elevator system, and simply consider the
scenario from the perspective of a user wishing to use the elevator. In other words, do not worry
about the scenario of multiple simultaneous users. So we are simply looking at the functionalilty
of a call button. The user presses a button indicating in which direction they intend to travel
in the elevator. At some point the elevator should arrive at the floor to collect the waiting user.

A small part of this is that the call button should indicate to the user whether or not the
elevator is coming. Generally this involves some kind of light embedded into the button. This is
useful feedback to the user such that they know their request has been registered and they have
not been dismissed/forgotten about. Hint: to have any effect, this light needs to be extinguished
when the current request is met.

As an extension you could add a ‘cancel’ button. If a user has waited too long they may
instead decide to use the stairs and may cancel their request.

1



1.3 Shopping List App

It’s common for a person to quickly jot down a few items they require from the shops before
going. In particular items required for a particular recipe. In the first tutorial you were asked
to write some use-cases for a smartphone application to solve this problem. Here, develop these
use cases into a class diagram.

The user should be able to store recipes such that all the required ingredients are added to
the current shopping list. They should in addition be able to remove some of those ingredients
if they already have them.

Another good feature would be substitutions, such as ingredients which could be used in
place of the desired ingredient/item if none are available.

Of course the user should be able to tick of items as they are placed into their basket or
bought at particular shops. An implementation could make this the same operation as for
removing items from a recipe that the user already has.

2 Your Task

For this tutorial consider at least one of the above example systems. Preferably one that you
tackled in the previous tutorial. Create a class diagram for each of the systems that you consider.

For each of the systems for which you have created a class diagram, answer the following
questions:

• Say how your design is structured to the problem rather than the solution.

• Was your design completed top-down? Most of the time that is what designers are the-
oretically aiming for, practical matters intercede. What parts were not done top-down,
and why?

• Is your design a functional design or an object-oriented design?

3 Sequence Diagram

The lecture slides contain a sequence diagram for the thermostat system. Provide the same for
the elevator system. Choose which use-case the sequence diagram is for. Do not forget that the
user has to select a destination floor once the elevator has arrived at their current floor.

4 Advanced - Negative Commenting

This section is mostly to promote discussion if there is time during the tutorial. One problem
with class diagrams and modelling design in general is the possibility to be overly complex and
hence too prescriptive. In the lecture you saw an example of trimming the possible objects
before beginning the actual class diagram. Now that you are finished with your class diagram
try to comment on each class describing what would happen if you were to remove this from the
class diagram. This is known as “Negative Commenting”. Hopefully for most of your classes
the effect of removing the class from the class diagram should be quite drastic.

Finally then, consider whether negative commenting is useful? Is it useful to the clients, the
developers, both or neither?

2


