Tutorial 2 Solution Guidelines: Inf2C-SE 2014 /2015

Thursday 9" October, 2014

Below I have given some notes to the questions posed in the second tutorial. Similarly to the
first tutorial there are no absolute right or wrong answers. Although there is less subjectivity
than in the first tutorial.

One thing to avoid is to mistake a class diagram for a blue-print for their object-oriented
code. It is important for such students to realise that they are not attempting to design the
implementation classes, but describe the design of the implementation. In particular if all we
wanted was a list of the classes in the implementation, then why not simply write down that
description in the implementation language. We could even write software to extract a UML
class diagram from source code.

However, implementation will have more classes and more detailed interfaces than will a
class diagram. In short the class diagram is an intermediate point between the unavoidably am-
biguous natural language of the use-cases and requirements specifications and the unambiguous
implementation source code. Here you are making the specification of the solution more con-
crete, without as much commitment as a full implementation. The goal is to clean-up mistakes
in the requirements before implementation is begun. Because of this, the class diagram should
still be understandable to someone who is not a software developer.

1 Thermostat

This is a relatively simple system. Most of the classes will only have a single instance, with
the exception of a class to model a room. I would expect a good solution to have the following
classes:

e Room, with a temperature attribute. The student may also model this as a sensor, or even
a room with a sensor attribute and a separate sensor class. Personally I find this a bit too
detailed at this stage. A good compromise would be a room with a ‘sensor-temperature’
attribute.

e Boiler, this will need associated methods for turning on and turning off.

e Thermostat, this has the associated method to either turn on (the entire heating system)
and another method to set the desired temperature.

In addition we would expect there to be some relations. In particular the rooms are con-
nected to the boiler and thermostat in some way. What these relations are named is not
important. But for example the Boiler may ‘heat’ each room and the thermostat may ‘poll’
each room. Finally a boiler is controlled by a thermostat.

Concerning multiplicity, there should be exactly one thermostat and one boiler but each can
be connected to one or more rooms. Exactly one thermostat controls exactly one boiler.



A good point here is that the class diagram may concern itself with allowing the user to set
the temperature in whichever room they are in. This is still setting one global temperature for
the property rather than a different temperature in each room. In this case, you still have only
one thermostat which still controls only one boiler. But the desired temperature setting on the
thermostat can be controlled by multiple remote controls.

For example solutions to this exercise, please see the lecture notes: http://wuw.inf.ed.ac.
uk/teaching/courses/inf2c-se/Lectures/Lectures-2014/lecture05-classDiags.pdf

2 Elevator

Because of the cut down nature of this problem there is only one user. Hence the solution
should be careful not to have multiple users. Of course a real solution to a real elevator problem
would have multiple users, but that is not what is being asked here.

An important part of specification is to detail what the system will not do. So explicitly
having only a single user (at a time), details well that the system cannot cope with multiple
users. At that point, the customer may well require a change.

This system, then requires three classes:

e The elevator itself, with a current floor and destination floor which may be null. You may
also include an ‘occupied’ attribute.

e A user, with a current floor and a desired floor.

e The call buttons on each floor.

Again there can be variations on this. The student may decide to model each floor with
each floor having a call button. A really good solution will include a generic button class which
is sub-classed for the call buttons and the elevator buttons. The advantage of this is that each
button has to have the functionality of displaying to the user that it has been pressed and that
the system is currently processing that request (and of course additionally some way for the
system to remove the highlighting from the button once it believes that request to have been
satisfied).

Figure 1 depicts a possible class diagram for the simple elevator system.

3 Shopping List App

There is quite a bit more scope for creativity here. Any solution will need some class for at
least:

e A recipe
e An item to be included in a shopping trip

e A shopping list, consisting of items which need to have associated check buttons, such
that the user can cross items off the list as they are added to the basket.

I think a good solution will extend the items in a recipe for use as items on a shopping list.
The extension includes the functionality to check the item off on the list.

Figure 2 depicts a possible solution to the shopping list application. Note that the rela-
tionship between the shopping list and a recipe is only one of referring to. Adding a recipe to a
shopping list merely results in all of the products in a recipe being added as items to the current



Elevator

Elevator Controller Door
+ direction: boolean

+ current_floor : int 1 1 +floor_id :int + closed : boolean = true
+ position :int

+move() + direction : boolean +close()

+ stop() +open()

+ status()

1

m
Button

+illuminated : boolean = false

+illuminate()
+ cancel_illuminate()
+ status()

Elevator Button Call Button
+ floor_num :int

+floor_num :int -
+ direction : boolean

Figure 1: A possible solution for the elevator problem. Note that here the elevator to elevator
controller is depicted as a 1-to-1 mapping as is specified by the problem. In a more realistic
setting with multiple elevators this could be a many-to-one relation, with one elevator controller,
controlling many elevators.

shopping list. Removing a recipe can be done in a similar fashion by first looking at what is
in the recipe and then removing all of those items from the current shopping list. Exceptions
would be made for the cases in which the user has already removed a recipe-item manually.

Also note that the solution given would mean that a user could simply reduce the quantity
of an item if they are able to buy some of them but not all. For example if the recipe calls for
12 eggs and for some reason the first shop only has 6 eggs then the user can reduce the quantity
required rather than checking the item.

4 Sequence Diagram

This section is mostly intended to expose students to drawing a sequence diagram. Most
sequence diagrams are relatively straightforward. You are drawing the sequence of actions for
a single use-case, usually without any alternative paths. Figure 3 depicts a sequence diagram
for the elevator system. The particular use-case is that of the user calling the elevator to the
user’s current floor. Here we have assumed that the doors close method can be called even if
the doors are closed.

5 Advanced - Negative Commenting

This depends hugely upon what class diagrams have been produced for the first parts. It might
be that your class diagrams are already quite concise, and hence removing each of the classes
does indeed have a drastic effect on the system.



Recipe Product

+field: Name ‘ +field: Name
+field: Product -

1 1-N
References
+ add(Product, quantity)

+ remove(Product) 1

1

ltem

+ field: product
+field: checked = false

+ check()
+ uncheck()
+ setQuantity()

Refers to 1N

Contains

1

Shopping List
+field: ltems
+addltem(item)

+ removeltem(ltem)
+ addRecipe(Recipe)

Figure 2: A possible class diagram for the shopping list application. This solution is kept simple.

User, floor = x Elevator Controller

Elevator, floor =y

i Presses call button 1
— —>
: : ‘

Doors close

Set destination = :
et destination XH“

: Moves to floor x
«—

Doors open :

Figure 3: A possible solution to drawing the sequence diagram for a single use-case for the
elevator system. In this case the use-case is that of calling the elevator to a floor the user is on.



In general negative commenting on your class diagrams is a useful exercise particularly when
first learning to use class diagrams. Hopefully, as you use class diagrams more often it becomes
a question you ask of yourself before you add a class to the diagram. Hence going over the
document at the end is less necessary. But it could rarely hurt.



