The Waterfall Model

Reguirements
Software development processes: from the 7
waterfall to the Unified Process

Design

H

Nigel Goddard .
Implementation

School of Informatics ;
University of Edinburgh
Verification 7

Maintenance

Image from Wikipedia

Pros, cons and history of the waterfall Spiral models

+ better than no process at all — makes clear that
requirements must be analysed, software must be

Split project into controlled iteration: each iteration is a
tested, etc.

mini-waterfall.
— inflexible and unrealistic — in practice, you cannot
follow it: e.g., verification will show up problems with
requirements capture.
slow and expensive — in an attempt to avoid

+ Mitigate risk. E.g. check user requirements, try out
technology, practice new techniques in an early iteration to
catch errors before main cost of project starts.

problems later, end up “gold plating” early phases, — Cost: e.g., repeated testing and documentation. A few
e.g., designing something elaborate enough to projects are so low risk that iteration isn't cost-effective.
support the requirements you suspect you've missed, In practice, need for rework: essential to allow time for
so that functionality for them can be added in coding refactoring.

without revisiting Requirements. Big projects need different approaches to different iterations.

Introduced by Winston W. Royce in a 1970 paper

as an obviously flawed idea!

Steps towards the Unified Process

» 1960s - 1987: lvar Jacobson at Ericsson: early
component-based development, architectural block diagrams.

» 1087-1995: Jacobson founded Objectory (contraction of
“Object factory"), added use cases

» 1995: Grady Booch, Jim Rumbaugh and Ivar Jacobson
together at Rational, which bought Objectory. “The methods
war is over — we won.” First version of Unified Method
produced. Controversial: quickly overshadowed by UML.

» 1995-1997: Rational Objectory: added controlled iteration
» 1998: (Rational) Unified Process

Unified process: the public domain, generic ideas
Rational unified process: more detailed, commercial. Now IBM.

Lots of variants, e.g. OpenUP, EnterpriseUP...

The four Ps

Four equally-important aspects of the software engineering process

Process
temp!
automation

parlimpanis Project ‘ ’71-00'5 ‘

result

Product

People - do everything
Project - make the product

Product - not just code
Process - organises the project
» Tools - support process

vV Vv Vv Yy

Characteristics of UP Get carly feedback

Mitigate major risks

early Business needs drive

Controlled Use—Case

Early user acces)))
iterative Driven

Understand user
requirements

Architecture Tailorable
Centric

Increase reuse Improve quality

Extensibility Tailor the process

(adapted from Rational slide)

UP phases (iterative: end with review)

» Inception ends with commitment from the project sponsor to
go ahead: business case for the project and its basic feasibility
and scope known.

» Elaboration ends with

> basic architecture of the system in place,

a plan for construction agreed,

all significant risks identified,

major risks understood enough not to be too worried.

v VvYyy

» Construction (definitely iterative) ends with a beta-release
system .
» Transition is the process of introducing the system to its users.

application requirements

UP phases: risk management

Risk

Iterative,
Incremental Tl

Waterfal

fer1 | Her2 | - e — pooer & iter.
' H H : H

(adapted from Rational slide)

Workflows used in phases

Disciplines
Business Modeling
Requirements

Analysis & Design

Implementation

Test

Deployment
Configuration

& Change Mgmt

Project Management

Environment

Phases
‘Inmpﬁun” Elaboration H Construction HTransltinrl‘

——
Elab #1 | | Flab #2 || Const Cmsthnmt”Tran
| Initial ” || | #1 ” #2 | #N || #1

Tran
#2

Iterations

(adapted from Rational slide)

Workflows: 9 activites

6 Engineering workflows:

Business modelling

Requirements

Implementation
Test

>
>

» Analysis and design
>

>

» Deployment

3 Supporting workflows:

» Configuration and change management
» Project management

» Environment (e.g. process and tools)

UP best practices

Six fundamental best practices:

1. Develop software iteratively. Customer prioritisation, best first.

N

Manage requirements. Explicit documentation, analyze
impact before adopting.

. Use component-based architectures. Reuse, maintenance,...

3

4. Visually model software. UML...
5. Verify software quality. Testing...
6

. Control change to software. Configuration management...

After a while, these should become automatic!

Personal Software Process | Personal Software Process I

Watts Humphrey, A discipline for software engineering p9:

“The following is the approach taken by the PSP: PSP provides a ladder of gradually more sophisticated practices.

» ldentify those large-system software methods and practices Explicit phases of development, e.g. separate design from coding.

that can be used by individuals. Lots of forms to fill in, e.g. time recording log, defect recording log.
» Define the subset of those methods and practices that can be Aim is to provide numerical data adequate for identifying weak
applied while developing small programs. areas and tracking improvements, in process and in own skills.
» Structure those methods and practices so they can be More info: http://www.sei.cmu.edu/tsp/

gradually introduced.
Tool support: http://www.processdash.com/

» Provide exercises suitable for practising these methods in an
educational setting.”

Where does PSP fit in? Reading

PSP is a relatively high ceremony process, aimed at individuals and
small projects. It's often used as a training process by people who

expect to end up using a high ceremony process — such as UP — on Suggested: Browse the web to learn more about the processes
large projects. mentioned:
TSP, Team Software Process, is an intermediate. » Waterfall
. . . » Spiral
A roceses st o oo Fogmin e v " Faora) U poces
d:)flfaerent contextgasps my tions Kepxt IectFL)Jre R > Personal Software Process
umptions. ' > Capability Maturity Model

A process maturity model such as CMMI (from SEI) can be used
to help choose how to improve a software development process so
as to fit the actual needs of the organisation.

http://www.sei.cmu.edu/tsp/
http://www.processdash.com/

