Software deployment and maintenance

Nigel Goddard

School of Informatics
University of Edinburgh

Is deployment the problem?

Not always.

Often, problems show up at deployment which are actually failures
of requirements analysis. Disaster — such problems can be very
hard or impossible to fix, in a large system. e.g. NPfIT...

However, there are also genuine transition issues.

What is deployment?

Getting software out of the hands of the developers into the hands
of the users.

More than 50% of commissioned software is not used, mostly
because it fails at deployment stage.

80% of the cost of (commissioned) software comes at and after
deployment.

What are the issues that make it hard?

Key issues around deployment

» Business processes. Most large software systems require the
customer to change the way they work.

» Training. No point in deploying software if the customers
can't use it.

» Support. The need goes on, and on, and on.

» Deployment itself. How physically to get the software
installed.

» Equipment. Is the customer’s hardware up to the job?

» Expertise. Does the customer have the IT expertise to install
the software?

» Upgrades. Can't avoid them!
» Integration with other systems of the customer.

» Performance.



Deployment itself Maintenance

Many people will sell you tools to help deploy software. Such
systems help you to:

> package the software Software has bugs. New feaFures are required. Circum§tances
. . change. Therefore software is changed. Who changes it?
» make it available (nowadays over Internet or on DVD) ;
Development team broken up — maintenance may be done by
» give the customer turn-key installers, which will: different company!
> check the system for missing dependencies or drivers etc. Repeated change leads to architectural degradation. Old systems
» install the software on the system may have been degraded from the start!
> set up any necessary licence managers Software rots. Even with no code changes, the systems change,
> . and eventually you can't compile the software.
A relatively simple system for Java programs is Java Web Start. Tracking bugs: Trac / Bugzilla / Jira / Mantis...

See suggested reading. But not all it's cracked up to be...

Good commercial installation-builder: install4;.
Best free installer-builder: izpack.org

Software evolution and release management Re-engineering

Re-engineering is the process of taking an old or unmaintainable
system and transforming it until it's maintainable. This may be
considerably less risky and much cheaper than re-implementing

Discipline in the evolution of software is (at least) as important as
in its development.

» gather change requirements: new features, adapting to from scratch.
system/business change, bug reports Re-engineering may involve:

» evaluate each; produce proposed list of changes )
P prop & » Source code translation e.g. from obsolete language, or

» go through normal development cycle to implement changes — assembly, to modern language

ensuring that you understand the software, which may be

non-trivial » Reverse engineering i.e. analysing the program, possibly in the
] ' absence of source code.
> issue new release

» Structure improvement, especially Modularization.

Unfortunately, emergencies happen, and things have to be done » Data re-engineering.
with urgency. If at all possible, go through the normal process
afterwards. Issues: what is the specification? Which bugs do you deliberately

preserve?



Reading

Suggested: The Java webstart page
Suggested: The izpack.org website

(see above or the web page for URLs)



