Sommerville Chapter 7
Fowler Chapters 4 and 11

1 As an alternative to the Papyrus Tool on Eclipse, try
the free online drawing tool

https://www.draw.io/

* Use the UML class and sequence diagram objects
from the menu on the left side panel (under “UML").

https://www.draw.io/

Room

Power Switch

4

[=

ush

Q 1

Notify »
*
1
| T
Water Valve
1
Control Panel
1 1
1
Thermostat
1
Adjyst »
Operator

Request Heat »

Water Pump

Temp Sensor Start »
1
1 1
Furnace
L 9.9,
Fuel Valve Burner

Class name

aftibute- L data-type-1 = default-value- 1
attibute-2 . data-type-2 = default-value-2
aftibute-3 . data-type-3 = defautt-value-3

(]

peration-L(argument-ist-1) : resut-ype-L
neration-2(argument-ist-2) : resut-ype-2
peration-3(arqument-ist-3) : result-type-3

(]

(]

winterface:
Person

firsthlame : String
lastName : String

Professor

salary : Dollars

Student

major @ Siring

A class and an interface differ:

A class can have an actual instance of its type, whereas an
Interface must have at least one class to implement it. In UML 2, an
Interface is considered to be a specialization of a class modelling
element. Therefore, an interface is drawn just like a class, but the
top compartment of the rectangle also has the text "«interface»", as

shown in Figure.

{{IﬂtEI’FEIIE}}1
= Player
LiSes
Studio - +|'II!-EI':."I:I
+stop()
+pause()
— +raversa() 3
x'; i T lI-I-\-\-"
ol PN o
£y ,
' LY
| : !{-:Ma,erfate}}:
i DVDPlayer l CDPlayer Recorder
L
S— | Hrecord()
|'l"'|
Lh
TapePlayer

http://www.cs.sjsu.edu/~pearce/modules/lectures/oop/basics/interfaces.htm

«interface:
Person

firsthlame : Siring
lastame @ Siring

Professor

salary : Dollars

For sensors and actuators that the Cruise
Control system interacts with, draw
interface classes. For your homework, you
are only required to show the interface
class for each sensor/actuator with
attribute and operations that are useful to
the CCS. Details on the sensor and
actuator class implementing the interface
class is not necessary.

Student

major @ String

1 The class diagram should have a class for the
CCS

' The class diagram should have interface
classes for the different sensors, timer, and
actuator.

' You should also include class(es) for the
buttons on the dashboard.

BThe object model describes the structure of the
system (objects, attributes, and operations)

BThe dynamic model describes how the objects
change state (how the attributes change) and in
which order the state changes can take place

BSeveral models used to find the appropriate

dynamic behavior
" Interaction diagrams
" Activity diagrams

" State Diagrams

* Uses finite state machines and expresses the changes in terms
of events and states

Fowler Chapters 4 and 11

B| earn why we use interaction diagrams

BDiscuss sequence diagrams
" Capturing use-cases
" Dealing with concurrency

BDescribe collaboration diagrams
BDescribe Activity diagrams

BClarify when to use what

BDiscuss when to use Interaction diagrams

BAnN Interaction Diagram typically captures a

use-case
" A sequence of user interactions

BSequence diagrams
" Highlight the sequencing of the interactions
between objects
BCollaboration diagrams
" Highlight the structure of the components
(objects) involved in the interaction

Use case: Power Up

Actors: Home Owner (initiator)

Type: Primary and essential

Description: The Home Owner turns the power on. Each room
Is temperature checked. If a room is below the
the desired temperature the valve for the room is
opened, the water pump started, the fuel valve
opened, and the burner ignited.
If the temperature in all rooms is above the desired
temperature, no actions are taken.

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases: None

Control Panel

i

On-Off Switch

[IssynoN

Thermostat

desired-temp

setting
[0 Pushes Adjusts[]
Operator

Room

Furnace

Y

0 Runs

Water Pump

Burner

Fuel Valve

0 Opens/Closes

Water Valve

0 Ignites
1..*
*
1.. =
=5
| T |3
S 8
Temp Sensor % =
temperature Controller

a Home Owner |the OnOff Swatch the Controller Room the Water Pump

System On .
powerOn() .
[for all rooms] *[fior all rooms]
tenq:EtﬂtUFmEdtTenq]
[temp Status—low] pumpOn{)
(S
openVahs)
=
startBumen)

a Home Owner the On-Off Swatch

System On

the Controller a Room

powerCn{)

tempStatus=checkTemp()

*[for al rooms]

[tempStatus=— low]
pumpOn{)

[tempStatus— low]
openVahd)

[tempStatus— low]
stantBumen)

the Water Pump

. Room
Notify » . Reques} Heat»
*
1 1
1
Water Valve Temp Sensor Start» Water Pump
1
1 1 1
Control Panel Furnace

! 1010 L 141L1—

P itch Th
ower Switc ermostat Fuel Valve Burner
1 1
< Rush .
Adjust»
1 Operator

a Furnace

e
o
e
D
- +—
X <
D 2
©
(@)
e
S
o [[T A - T T
© o
-
D
=
)
D
=
w
D
©
L
o)
(7))
© ©
c —
S S
m |||||| N —]————————————-—
c cE
@)) 3
@) mv o
@© c ©
e -
Q o
=3
|
©
» Q
o
o - L ______
| —
D
e
T
©
-
N
(7p]
=)
— o
D
[
=
o
D
m L e e ol e e e e e e e e e e e e e
o
I
D
e
T

a Furnace
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
[

N
71
|
|
|
|
|

o
&
(D]
- o
Nw [4s]
o 2
o
(@))
-
o
o /]
(qv] o
-
D
M
=]
et
7]
D
®)
+5
(b]
w
ro) ©
c —
k5 S
o k_—____ - d-- - ____
= /N
c
(@) (D)
@) (=)
© &
=
@
3
d
[qv]
1))
=
S N
=
T
(qv]
-
=
[
>
— | &
D
c
=
(@]
(¢b]
c - - -l ____
(@]
I
(D)
=
T

an Order entry

s an Order an Order Line 2 Stock ltem

prepare)
[for all order ines| | prepare()

hasStock:= check() |

[hasStock
©emove) o needsReorder=needsTo Reordel)

needsReorde
[{ new » & Reorder ltem

new » & Delivery ltem

an Orderentry

) an 0rder an OrderLine a Stock Item
W indow
| | | |
I prepare() | I I
| P forallorder lines] | |
I I prepare() I I
| | > |
| | | . |
hasStock ;= check
| | RLL Hlyy
' ' ' (hasStock] '
' ' ' remove() '
: : : T needsReorder:=needsToReorder()
| | | |
| | | |
: : : : [needsReorder]
| | | I nev B aReorderltem
| | ks |
| | | | I
| | | |
I I i i hasStock]new ! » aDelivery Item
| | | | l
| | | | | |
| | | | l |

a firstTransaction

Checker

0k

a second
Transaction

Checker

a Transaction
t~ new a Trangacnon
I | Coordinator
|
|
| new
| ’
|
|
| new
|
| T
| | 0k
| T
| allDone? >X<
|
|
|
| —~
|

allValid ﬁ allD o

ne?

a8 Home Owner the OnOff Switch the Controller

System On

the Water Pump
powerOn() .
for every roomj ' new
a Room
check lempl)
=
templo
- mpLow
[tempLow pumpOr)
=
openVahd)
3
startBumer()
>

a Home Owner

the 0 n-0ffSwitch

the Controller

System 0n I

» power0n()

the W aterPumop

[[
I |
I
Flforeach room inhouse] '
new :
| a Room |
I I
: checkTemp() |
I
| A |
|] |
" templow :
[templow] I I
pump0n() |
i d
[templow]
openValve() ! :
| —»
[tempLow] [|
startBurner() I [>
T | |
I

The Homeowner

the OnOff Switch

a Control Panel

System On |

power-on

for all: new

a Room

a Furnace
check temp
get-heat
AN

Whentheowner
turns the system on

the on switch notifies
the controller

The controller
creates aroom object
foreach room in the
building

Therooms sample
the temperature in
the toom every 5 s,
Whenalow temp is
detected the room
notifies the
controller.

a Home Owner

the 0n-0ffSwitch

the Controller

System 0n I

» jpower0n|) |

Flforeach room in house]

new

the WaterPump

I_______

templow

aRoom

-

[templow]
pump0n()

checkTemp()

[tem pLow]
openValve()

[templow]
startBurner()

v

e n et B

\ 4

I
I
I
I
I
I
I
I
I
I
I
I
|
I
d
I
I
|
I

lighlights the sequencing of of the

iInteractions between objects
" Shows what messages (information) is passed
between objects

" Shows Iin which order the messages are sent
" This is the main emphasis of the diagram

BAllows for concurrency, process creation,
and process destruction
BClarity is the goal — use comments

arere an Order an Order Line 8 Stock Item
prepare)
forallorderfines) | prepare)

hasStock:= check) |

[hasStock

remove(| needsReorder:= needsToReorder)

needsReonde

[i new » & Reorder Item
new

» & Delivery ltem

Order Entry
W indow

L prepare()

Order

5:needsReorder:=needsToReorder()

prepare() 3 hasStock = check() //\\

2 *fforallorderlines):

Stock Item

W interfline :OrderLine /<::::::::::::::::::::::::: W interstock :

b fhasStock]:
remove()

T o[hasStock]:new 6 :[needsReorder]:

new

Delivery Item

a Reorder Item

lighlights the structure of the components

(objects) involved In the interaction

" Better shows how the various objects are
related to each other

" Can help you identify which classes to put in a
larger module

BDoes the same thing as a sequence
diagram, but with a different focus
BAgain, clarity Is the goal — use comments

BSomething you will encounter trying to

capture complex use-cases
" The user does something. If this something is X
do this... If this something is Y do something
else... If this something is Z...
BSplit the diagram into several
" Split the use-case also
BUse the conditional message
" Could become messy

BRemember, clarity is the goal!

BBoth diagrams capture the same

iInformation
" People just have different preferences

B |like sequence diagrams

" They clearly highlight the order of things

" Invaluable when reasoning about multi-tasking
BOthers like collaboration diagrams

" Shows the static structure
" Very useful when organizing classes into packages

B| get the structure from the Class Diagrams

®\Vhen you want to clarify and explore

single use-cases involving several objects
" Quickly becomes unruly if you do not watch it

B|f you are interested In one object over
many use-cases — state transition
diagrams

B|f you are interested in many objects over
many use cases — activity diagrams

How to use CRC cards in modeling

®\What iIs CRC modeling?
®\What are CRC cards?
®How do we do this?
BThis is silly

" Does it really work?

B[et’s give it a try!

®BIn an OO model, no object stands by itself
" Only operates on its own data
" Every object has some responsibilities

" But
" to get the job done they need to collaborate

B This can be a tough shift in the way of
thinking about software

®mmerse the analyst in the object world
" CRC modeling (Kent Beck and Ward
Cunninham)

BAids In finding attributes, operations, and
associlations

BProvides guidelines for what a class
“should be able to do” and what other
classes it will work with and work for

BBased on standard index cards and group
meetings

BThree steps

" [dentify classes

" Define responsibilities
" |[dentify collaborators

B Use guidelines defined earlier

B Capture the class on a CRC card
" Software support is available

Class Name:

Class Type:(e.q. device, property, etc.)

Class Characteristics: (e.qg., tangible, atomic, aggregate, etc.)
Responsibilities: Collaborators

Order

Class Type: Property

Class Characteristics: tangible

Responsibilities: Collaborators
Check if items in stock Order Line
Determine price Customer

Check for valid payment

Dispatch to delivery address

BFollow the guidelines
" Responsibilities should be evenly distributed
" State responsibilities in general terms
" Information should be localized
" Information related to the responsibility in the
same place

BClasses fulfill their responsibilities in one of
two ways

" [t can use its own methods to modify its own
attributes

" [t can collaborate with other classes
Bif a class cannot fulfill its responsibllities

alone, identify and document the
collaborators

" |s-part-of

" has-knowledge-of

" depends-upon

®Manual review technique with role playing

BGive each participant a collection of CRC
cards

BUJse scenarios organized into categories

BReview |leader reads the scenario
" Manually execute scenarios
" Pass token to the “executing” class
" Call upon collaborators

Close Collaboration Refinement of Abstraction

Supervision

Binteraction diagrams show how objects “talk”

to each other
" Sequence diagrams
" Collaboration diagrams

BSequence diagrams

" highlight the ordering of the interactions
BCollaboration diagrams

" highlight the structure of the collaborators

BPick the one that fits your needs well
" Remember, clarity is the goal!!

BDesign Patterns
" Highly relevant for the design assignment
" Design homework due on October 16th

BReading
" Web resources
" Fowler Chapter 10 (or equivalent)

