
Inf2C-SE
Summary Lecture

Ajitha Rajan

CSci 5801 - Fall 2013Mats Heimdahl1

How Software Development Works

CSci 5801 - Fall 2013Mats Heimdahl2

?

?

?

Requirements
Specification

Design

Implementation

Concept
Formation

Why is Software Development so %$##% Hard? (L)

 Complexity

 Software systems are the most complex artifacts ever created

 Invisibility

 We cannot see the progress of the development

 Changeability

 Software is “easy” to change

 Conformity

 The software will have to be molded to fit whatever external
constraints may be imposed

CSci 5801 - Fall 2013Mats Heimdahl3

We Need a Software Process

 Structured set of activities required to develop a
software system
 Specification

 Design

 Validation

 Evolution

 Activities vary depending on the organization and
the type of system being developed

 Must be explicitly modeled if it is to be
managed

Generic Software Process
Models

 The Waterfall Model
 Separate and distinct phases of specification and

development

 Evolutionary Development
 Specification and development are interleaved

 Spiral Model
 Let risk analysis drive your process

 Incremental Development
 Deliver your system in small planned increments

 Agile and eXtreme Programming

 7

Process Characteristics

 Understandability

 Is the process defined and
understandability

 Visibility

 Is the process progress
externally visible

 Supportability

 Can the process be supported
by CASE tools

 Acceptability

 Is the process acceptable to
those involved in it

 Reliability

 Are process errors discovered
before they result in product errors

 Robustness

 Can the process continue in spite
of unexpected problems

 Maintainability

 Can the process evolve to meet
changing organizational needs

 Rapidity

 How fast can the system be
produced

CSci 5801 - Fall 2013Mats Heimdahl8

Waterfall Model

CSci 5801 - Fall 2013Mats Heimdahl10

Requirements
Definition

Systems and
Software Design

Implementation
and Unit Testing

Integration and
System Testing

Operation and
Maintenance

Evolutionary Development

CSci 5801 - Fall 2013Mats Heimdahl13

Concurrent Activities

Outline
Description

Specification

Development

Validation

Initial
Version

Intermediate
Versions

Final
Version

Evolutionary Development

 Evolutionary prototyping

 Objective is to work with customers and to evolve a final
system from an initial outline specification.

 Typically starts with well-understood requirements

 Throw-away prototyping

 Objective is to understand the system requirements.

 Typically starts with poorly understood requirements

CSci 5801 - Fall 2013Mats Heimdahl15

Spiral Model

CSci 5801 - Fall 2013Mats Heimdahl11

Plan next phase

Determine objectives,
alternatives, and
constraints

Develop and verify
next-level product

Evaluate alternative,
identify and resolve risk

Simulations, models, benchmarks
Concept of
operation

Requirements plan
Life-cycle plan

Review
Prototype-1

Risk
analysis

Risk analysis

Operational
prototype

Integration test

Code
Unit test

Detailed
design

Service Acceptance test

Risk analysis

Prototype-3

Design
V&V

Product
design

Integration and test plan

Risk analysis

Prototype-2

Requirements
validation

S/W
requirements

Development plan

Incremental Development

 System is developed and delivered in increments after
establishing an overall architecture

 Users may experiment with delivered increments while
others are being developed

 Therefore, these serve as a form of prototype system

 Intended to combine some of the advantages of prototyping
but with a more manageable process and better system
structure

CSci 5801 - Fall 2013Mats Heimdahl17

Process Overview

 Inception

 Elaboration

 Construction
 Many iterations

 Transition

CSci 5801 - Fall 2013Mats Heimdahl20

Inception Elaboration

C
onstruct ion 1

C
onstruct ion 2

C
onstruct io

n 3

C
onstruct io

n n

Transition

Agile processes

What the spiral models were reaching towards was that software
development has to be agile: able to react quickly to change.

The Agile Manifesto http://agilemanifesto.org:

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we
value the items on the left more.

http://agilemanifesto.org

12 principles of Agile
I Customer satisfaction by rapid delivery of useful software
I Welcome changing requirements, even late in development
I Working software is delivered frequently (weeks rather than

months)
I Working software is the principal measure of progress
I Sustainable development, able to maintain a constant pace
I Close, daily co-operation between business people and

developers
I Face-to-face conversation is the best form of communication

(co-location)
I Projects are built around motivated individuals, who should be

trusted
I Continuous attention to technical excellence and good design
I Simplicity- The art of maximizing the amount of work not

done - is essential
I Self-organizing teams
I Regular adaptation to changing circumstances

Extreme Programming

One variant: Extreme Programming (XP) is

“a humanistic discipline of software development, based on values
of communication, simplicity, feedback and courage”

People: Kent Beck, Ward Cunningham, Ron Jeffries, Martin Fowler,

Erich Gamma...

More info: www.extremeprogramming.org,
Beck “Extreme Programming Explained: Embrace Change”

XP Practices

The Planning Game
Small releases
Metaphor
Simple design
Testing
Refactoring
Pair programming
Collective ownership
Continuous integration
40-hour week
On-site customer
Coding standards

Where is XP applicable?

The scope of situations in which XP is appropriate is somewhat
controversial. Two examples

I there are documentated cases where it has worked well for
development in-house of custom software for a given
organisation (e.g. Chrysler).

I A decade ago it seemed clear that it wouldn’t work for
Microsoft: big releases were an essential part of the business;
even the frequency of updates they did used to annoy people.
Now we have automated updates to OSs, and Microsoft is a
Gold Sponsor of an Agile conference

XP does need: team in one place, customer on site, etc. “Agile” is
broader.

Three Processes

CSci 5801 - Fall 2013Mats Heimdahl21

Waterfall Iterative XP

Time

Scope Slide adopted from Beck

Requirements Specification

 High-level description of what a system should do

 Must be detailed enough to distinguish between the
“right” and the “wrong” system

 Capture the what not the how

 The specification process must involve all stakeholders

 Customers

 Engineers

 Regulatory agencies

 Users

 10

Key Points

 Requirements capture what a proposed system shall do
 But avoids design detail as much as possible

 Written in the user’s language

 Poor requirements are the source of all evil

 Requirements problems are the
 Most costly

 Most difficult to correct (they are conceptual)

 15

Requirements Readers

 19

Market
Requirements
Definition

Software
Requirements
Specification

Software Design
Description

Client engineers
System architects
Software developers

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Capturing Good Requirements
 21

 3 Common Problems

● Poorly structured requirements document

● Poorly written individual requirements

● Untestable requirements (future lecture)

Four Easy Requirements Guidelines

 Avoid requirements “fusion”

 One requirement per requirement specification

 Be precise

 No vague requirements

 Be rigorous in defining requirements test cases

 If you cannot define how to test if a requirement is satisfied,
you probably have a poor requirement

 Attach a person to each requirement

 People are much less likely to add “the kitchen sink” if their
name is there – no gold plating

 40

Each Requirement Must Be

 Correct

 The requirement is free from faults.

 Precise, unambiguous, and clear

 Each item is exact and not vague; there is a single
interpretation; the meaning of each item is understood; the
specification is easy to read.

 Complete

 The requirement covers all aspects of the user function.

 Consistent

 No item conflicts with another item in the specification.

 44

Each Requirement Must Be (Cont.)

 Relevant

 Each item is pertinent to the problem and its solution.

 Testable

 During program development and acceptance testing, it will be
possible to determine whether the item has been satisfied.

 Traceable

 Each item can be traced to its origin in the problem environment.

 Feasible

 Each item can be implemented with the available techniques,
tools, resources, and personnel, and within the specified cost and
schedule constraints

 45

The SRS (as a document) Must Be

 Complete

 All user requirements have been included. Do not forget
abnormal and boundary cases.

 Consistent

 No item conflicts with another item in the specification.

 The requirements shall be at a consistent level of
detail

 Manageable and Modifiable

 Things will change and we must be able to accommodate
the inevitable requirements evolution.

 46

The Requirements Engineering
Process

Fall 2013CSci 5801 - Dr. Mats P.E. Heimdahl5

Feasibility
Study

Requirements
Analysis

Requirements
Definition

Requirements
Specification

Requirements
Document

Specification of
Requirements

Definition of
Requirements

System
ModelsFeasibility

Report

What is a Use-Case

 A use-case captures some user visible function

 This may be a large or small function

 Depends on the level of detail in your modeling effort

 A use-case achieves a discrete goal for the user

 Examples

 Format a document

 Request an elevator

 How are the use cases found (captured or elicited)?

 17

Use-Case Diagrams

 25

Adapted from Larman “Applying UML and Patterns”

C u s t o m e rC a s h i e r

B u y I t e m

L o g I n

R e f u n d a P u r c h a s e d I t e m

P O S T

U s e C a s e

S y s t e m B o u n d a r y

M H

Setting the System Boundary

 The system boundary will affect your
actors and use-cases

 28

Adapted from Larman “Applying UML and Patterns”

C u s t o m e rC a s h i e r

B u y I t e m

L o g I n

R e f u n d a P u r c h a s e d I t e m

P O S T

M H

 35

Home Heating Scenario

Use case: Power Up
Actors: Home Owner (initiator)
Type: Primary and essential
Description:The Home Owner turns the power on. Each room

is temperature checked. If a room is below the
the desired temperature the valve for the room is
opened, the water pump started, the fuel valve
opened, and the burner ignited.
If the temperature in all rooms is above the desired
temperature, no actions are taken.

Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases:None

When to use Use-Cases

 In short, always!!!

 Requirements is the toughest part of software
development

 Use-Cases is a powerful tool to understand

 Who your users are (including interacting systems)

 What functions the system shall provide

 How these functions work at a high level

 Spend adequate time on requirements and in the
elaboration phase

 42

Derive Test Cases for the
Requirements

If you can’t test it, it is not a requirement!

 50

 53

Test the Requirement

Test Case 1
Input

Artificially raise the temperature above threshold

Test procedure

Measure the time it takes for the alarm to come on

Expected output

The alarm shall be on within 2 seconds

Key Points

 57

 Do yourself and the testing group a favor—Develop
Test Cases for Each Requirement

 If the requirement cannot be tested, you most likely
have a bad requirement
 Rewrite so it is testable
 Remove the requirement
 Point out why this is an untestable requirement

 Your requirements and testing effort will be
greatly improved

The World Machine Model
Mainly “Will It Work?”

3

Capture the Right Thing

 Requirements are always in the system
domain

 Software specification is in the computer
domain

 There are several levels of abstraction in
between

 Abstract away some details but not others

 4

Fall 2013CSci 5801 - Dr. Mats Heimdahl6

The WRSPM Model

Environment System

Interface

W R MS P

W – The World Assumptions (domain model)
R – The Requirements
S – The system specification
P – The Program (running on the machine)
M – The machine physically implementing the system

Fall 2013CSci 5801 - Dr. Mats Heimdahl7

The Variables in WRSPM

Environment System

Interface

eh shev sv

Visibility Control

Design Strategies

 Functional design

 The system is designed from a functional viewpoint

 The system state is centralized and shared between the
functions operating on that state

 Object-oriented design

 The system is viewed as a collection of interacting objects

 The system state is de-centralized and each object
manages its own state

 Objects may be instances of an object class and
communicate by exchanging messages

 35

Key Points

 Design is a creative process

 Design activities include architectural design,
system specification, component design, data
structure design and algorithm design

 Functional decomposition considers the system
as a set of functional units

 Object-oriented decomposition considers the
system as a set of objects

 38

Objectives

 To discuss some design quality attributes
 “Clarity”

 Simplicity

 Modularity

 Coupling

 Cohesion

 Information hiding

 Data encapsulation

 “Ilities”

● Adaptability
● Traceability

 40

 45

More Modularity

 46

Two Essential Properties

Low Coupling

High Cohesion

Several Complementary
Models

Structural Models
 Describes the structure of the objects in a system
 Structure of individual objects (attributes and

operations)
 Relationships between the objects (inheritance,

sharing, and associations)
 Clustering of objects in logical packages and on the

actual hardware
Dynamic models (behavioral models)
 The aspects related to sequencing of operations
 Changes to attributes and sequences of changes
 The control aspects of the system

<date/time><footer>11

The Class Diagrams

F
al
l
2
0
1
3

C
S
ci
5
8
0
1
-
D
r.
M
a
ts
H
ei
m
d
a
hl

18

<date/time><footer>25

Object Notation - Summary

operation-1(argument-list-1) : result-type-1
operation-2(argument-list-2) : result-type-2
operation-3(argument-list-3) : result-type-3

attribute-1 : data-type-1 = default-value-1
attribute-2 : data-type-2 = default-value-2
attribute-3 : data-type-3 = default-value-3

Class name

<date/time><footer>34

How represent salary and
job title?

Use a link attribute!

Link Attributes
 Associations can have properties the same way objects have

properties

name: String
age: integer

SSN: integer
address: String

Person

name: String
address: String

Company
Works-for 0..*

name: String
age: integer

SSN: integer
address: String

Person

name: String
address: String

Company
Works-for 0..*

salary: integer
job-title: String

<date/time><footer>47

Aggregation Versus
Inheritance

Do not confuse the is-a
relation (inheritance) with
the is-part-of relation
(aggregation)

Use inheritance for
special cases of a
general concept

Use aggregation for parts
explosion

Car

Wheel

Body

Gearbox

Engine

4

Station
Wagon

Compact 4 by 4

Transfer
Case

F
al
l
2
0
1
3

<footer>73

Class Diagram—v1

Control Panel

setting

On-Off Switch

desired-temp

Thermostat

Room

Operator

Water Valve

temperature

Temp Sensor

Furnace

Burner

Water Pump

Fuel Valve

Controller

 Pushes Adjusts

N
o

tifie
s


M

o
nito

r


H

e
a

ts

 Ignites
 Opens/Closes

 Runs

1..*

1..*

Interface Classes

A class and an interface differ:
A class can have an actual instance of its type, whereas an
interface must have at least one class to implement it. In UML 2, an
interface is considered to be a specialization of a class modelling
element. Therefore, an interface is drawn just like a class, but the
top compartment of the rectangle also has the text "«interface»", as
shown in Figure.

Fall 2013CSci 5801 - Dr. Mats Heimdahl7

Abstract Classes

 A class that has no direct instances but whose
descendants have direct instances

 The abstract class does not have a direct meaning

 The abstract class only has a meaning as an
abstraction

move() {abstract}

Shape

move()

Triangle

move()

Circle

move()

Rectangle

Aggregation versus Composition

CSci 5801 - Dr. Mats Heimdahl11

P o l y g o n

P o i n t

C i r c l e

- r a d i u s : f l o a t

S t y l e

- c o l o r : T C o l o r
- i s F i l l e d : b o o l

1

*

1

*

3 . . * 1

Interfaces and Abstract Classes

Fall 2013CSci 5801 - Dr. Mats Heimdahl12

« a b s t r a c t »
I n p u t S t r e a m

D a t a I n p u t S t r e a m

« I n t e r f a c e »
D a t a I n p u t O r d e r R e a d e r

Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Interaction Diagrams
Fowler Chapters 4 and 11

Different Types of Interaction
Diagrams

An Interaction Diagram typically captures a
use-case
 A sequence of user interactions

Sequence diagrams
 Highlight the sequencing of the interactions

between objects
Collaboration diagrams
 Highlight the structure of the components

(objects) involved in the interaction

Fall 201312

Fall 2013CSci 5801 - Dr. Mats Heimdahl13

Home Heating Use-Case

Use case: Power Up
Actors: Home Owner (initiator)
Type: Primary and essential
Description:The Home Owner turns the power on. Each room

is temperature checked. If a room is below the
the desired temperature the valve for the room is
opened, the water pump started, the fuel valve
opened, and the burner ignited.
If the temperature in all rooms is above the desired
temperature, no actions are taken.

Cross Ref.: Requirements XX, YY, and ZZ
Use-Cases: None

Fall 2013CSci 5801 - Dr. Mats Heimdahl14

Class Diagram—v1

Control Panel

setting

On-Off Switch

desired-temp

Thermostat

Room

Operator

Water Valve

temperature

Temp Sensor

Furnace

Burner

Water Pump

Fuel Valve

Controller

 Pushes Adjusts

N
otifies


M

onitor


H

eats
 Ignites

 Opens/Closes

 Runs

1..*

1..*

Fall 2013CSci 5801 - Dr. Mats Heimdahl15

Sequence Diagrams (for cd—
v1)

Comment the Diagram (for cd
—v1)

Fall 2013CSci 5801 - Dr. Mats Heimdahl26

a H o m e O w n e r t h e O n - O f f S w i t c h t h e C o n t r o l l e r

a R o o m

t h e W a t e r P u m p

S y s t e m O n
p o w e r O n ()

[t e m p L o w]
p u m p O n ()

[t e m p L o w]
o p e n V a l v e ()

[t e m p L o w]
s t a r t B u r n e r ()

* [f o r e a c h r o o m i n h o u s e]
n e w

c h e c k T e m p ()

t e m p L o w

M H

W h e n t h e o w n e r
t u r n s t h e s y s t e m o n

t h e o n s w i t c h n o t i f i e s
t h e c o n t r o l l e r

T h e c o n t r o l l e r
c r e a t e s a r o o m o b j e c t
f o r e a c h r o o m i n t h e
b u i l d i n g

T h e r o o m s s a m p l e
t h e t e m p e r a t u r e i n
t h e t o o m e v e r y 5 s .
W h e n a l o w t e m p i s
d e t e c t e d t h e r o o m
n o t i f i e s t h e
c o n t r o l l e r .

Fall 2013CSci 5801 - Dr. Mats Heimdahl30

Collaboration Diagrams

: O r d e r E n t r y
W i n d o w

: O r d e r

W i n t e r l i n e : O r d e r L i n e
W i n t e r s t o c k :

S t o c k I t e m

1 : p r e p a r e ()

2 : * [f o r a l l o r d e r l i n e s] :
p r e p a r e () 3 : h a s S t o c k : = c h e c k ()

4 : [h a s S t o c k] :
r e m o v e ()

5 : n e e d s R e o r d e r : = n e e d s T o R e o r d e r ()

a R e o r d e r I t e m

6 : [n e e d s R e o r d e r] :
n e w

7 : [h a s S t o c k] : n e w

: D e l i v e r y I t e m

M H

Fall 2013CSci 5801 - Dr. Mats Heimdahl31

Collaboration Diagrams
Summary

Highlights the structure of the components
(objects) involved in the interaction
 Better shows how the various objects are

related to each other
 Can help you identify which classes to put in a

larger module
Does the same thing as a sequence
diagram, but with a different focus

Again, clarity is the goal – use comments

When to Use Interaction
Diagrams

When you want to clarify and explore
single use-cases involving several objects
 Quickly becomes unruly if you do not watch it

If you are interested in one object over
many use-cases — state transition
diagrams

If you are interested in many objects over
many use cases — activity diagrams

Fall 2013CSci 5801 - Dr. Mats Heimdahl34

Activity Diagrams

Shows how activities are connected
together
 Shows the order of processing
 Captures parallelism

Mechanisms to express
 Processing
 Synchronization
 Conditional selection of processing

Fall 2013l4

Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Swimlanes (Who Does What?)

W r i t e
A s s i g n m e n t

S u b m i t
A s s i g n m e n t

M a i l
A s s i g n m e n t

S o l v e
A s s i g n m e n tW r i t e S o l u t i o n

M a i l S o l u t i o n

S u b m i t S o l v e d
A s s i g n m e n tS u b m i t

S o l u t i o n

R e v i e w
S o l u t i o n

H i t t h e P u b

[s u b m i s s i o n t i m e]

G r a d e
A s s i g n m e n t

I n s t r u c t o r H A C S S t u d e n t

Problems with Activity Diagrams

They are glorified flowcharts
 Very easy to make a traditional data-flow

oriented design
Switching to the OO paradigm is hard
enough as it is
 Extensive use of activity charts can make this

shift even harder
However….
 Very powerful when you know how to use them

correctly

Fall 2013CSci 5801 - Dr. Mats Heimdahl11

State Diagrams
Fowler, Chapter 10

Fall 2013 CSci 5801 - Dr. Mats Heimdahl 1

Events, Conditions, and
States
Event

 Something that happens at a point in time
 Operator presses self-test button
 The alarm goes off

Condition
 Something that has a duration
 The fuel level is high
 The alarm is on

State
 An abstraction of the attributes and links of an object (or entire

system)
 The controller is in the state self-test after the self-test button

has been pressed and the rest-button has not yet been
pressed

 The tank is in the state too-low when the fuel level has been
below level-low for alarm-threshold seconds

Fall 2013 CSci 5801 - Dr. Mats Heimdahl 4

Fall 2013 CSci 5801 - Dr. Mats Heimdahl 12

Idle

off-hook

Connecting

Busy tone

digit(x)

valid-number

called-phone-answers / connect line

called-phone-hangs-up / disconnect line

digit(x)

on-hook

routed

number-busy

do/ find connection

do/ busy tone

on-hook / disconnect line

on-hook

on-hook

on-hook

 Actions are
performed when a
transition is taken
or performed while
in a state

 Actions are
terminated when
leaving the state

on-hook

on-hook

Operations (AKA Actions)

Dial tone

Dialing

Ringing

Connected

Disconnected

do/ sound dial tone

do/ ring bell

Transition label: trigger-event [guard]/activity

Fall 2013 CSci 5801 - Dr. Mats Heimdahl 13

 Group states with
similar
characteristics

 Enables information
hiding

 Simplifies the
diagrams

Dial tone

on-hook

dial(x) [x is a digit]

do/ sound dial tone

Voice Mail

dial(x) [x = *]

Connecting

valid-number

do/ find connection
Busy tone

Ringing

Connected

Disconnected

do/ ring bell

dial(x)

routed

called-phone-answers /
connect line

called-phone-hangs-up /
disconnect line

on-hook

on-hook / disconnect line

off-hook

on-hook

Hierarchical State Machines

Idle

Make Call

Dialing

do/ busy tone

Establish call

number-busy

Design Patterns

Slides courtesy Gregory Gay

Guidelines, not solutions

“Each pattern describes a problem which
occurs over and over again in our
environment, and then describes the core of
the solution to that problem in such a way
that you can use this solution a million times
over, without ever doing it the same way
twice.”

- Christopher Alexander

12

Categories of design patterns

1. Creational

Decouple a client from objects it instantiates.

2. Structural

Clean organization into subsystems.

3. Behavioral

Describe how objects interact.

13

Why use design patterns?

1. Good examples of OO principles.

2. Faster design phase.

3. Evidence that system will support change.

4. Offers shared vocabulary between designers.
15

Observer Pattern - In Practice

22

<<interface>>
Observable

addObserver(Observer)
removeObserver(Observer)
notify()

<<interface>>
Observer

update()
observers

ConcreteObservable

State state
List<ConcreteObserver> observers

addObserver(ConcreteObserver)
removeObserver(ConcreteObserver)
notify()
getState()
setState()

ConcreteObserver

ConcreteObservable subject

update()
setSubject(ConcreteObservable)
// Action methods

subject

1

*

update(){
 state= subject.getState()
}

notify() {
 for observer in observers{
 observer.update()
 }
}

Why not use a design pattern?

What are the drawbacks to using patterns?

• Potentially over-engineered solution.

• Increased system complexity.

• Design inefficiency.

How can we avoid these pitfalls?

45

Architectural Design

Sommerville Chapter 6
The High-Level Structure of a Software Intensive System

Slides courtesy Prof.Mats Heimdahl 1

What is Architecture informally?

Software architecture is primarily
concerned with partitioning large systems
into smaller ones that can be created
separately, that individually have business
value, and that can be straightforwardly
integrated with one another and with
existing systems.

Fall 20137

Mike Whalen

Architectural Design Process

System structuring
 The system is decomposed into several

principal sub-systems and communications
between these sub-systems are identified

Control modeling
 A model of the control relationships between the

different parts of the system is established
Modular decomposition
 The identified sub-systems are decomposed

into modules

Fall 20138

Architectural Qualities
Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Performance Ease of
Maintenance

Testability

Security

Usability

Fall 201333

Key Points

The software architect is responsible for
deriving a structural system model, a
control model and a sub-system
decomposition model

Large systems rarely conform to a single
architectural model

System decomposition models include
repository models, client-server models
and abstract machine models

Control models include centralized control
and event-driven models

Fall 201334

Key Points

Modular decomposition models include
data-flow and object models

Domain specific architectural models are
abstractions over an application domain
 They may be constructed by abstracting from

existing systems or may be idealized reference
models

Software Testing:
Definitions and Fundamentals

Sommerville Chapter 8

Slides from Prof. Mats Heimdahl

Verification and Validation: IEEE

 Verification

 The process of evaluating a system or
component to determine whether the
products…satisfy the conditions imposed…

 Validation

 The process of evaluating a system or
component…to determine whether it satisfies
specified requirements.

Fall 2013CSci 5801 - Dr. Mats Heimdahl5

Validation and Verification

Validation: Are we building the right product?

Implements ?

Customer
Requirements Software

Verification: Are we building the product right?

ImplementationSpecification

Implements ?

Dynamic and Static Verification

 Dynamic V & V

 Concerned with exercising and observing product
behavior

 Testing

 Static V & V

 Concerned with analysis of the static system
representation to discover problems

 Proofs

 Inspections

Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Static and Dynamic V&V

Fall 2013CSci 5801 - Dr. Mats Heimdahl11

Requirements
Specification

High-Level
Design

Formal
Specification

Detailed
Design

Program

Prototype

Static
Verification

Dynamic
Evaluation

What is a Test?

Software
under Test

Test Data Output

Test Cases

Correct
result?

Oracle

Fall 201313CSci 5801 - Dr. Mats Heimdahl

Bugs? What is That?

 Failure

 An execution that yields an erroneous result

 Fault

 The source of the failure

 Error

 The mistake that led to the fault being
introduced in the code

Fall 2013CSci 5801 - Dr. Mats Heimdahl15

Testing Stages

 Unit testing

 Testing of individual components

 Module testing

 Testing of collections of dependent components

 Sub-system testing

 Testing collections of modules integrated into sub-systems

 System testing

 Testing the complete system prior to delivery

 Acceptance testing

 Testing by users to check that the system satisfies
requirements

 Sometimes called alpha and beta testing

Fall 2013CSci 5801 - Dr. Mats Heimdahl20

V Graph

Fall 2013CSci 5801 - Dr. Mats Heimdahl21

Requirements
Analysis

High-Level
Design

Low-Level
Design

Coding

Delivery

Maintenance

System

Integration

Unit

Unit

Acceptance

Regression

Testing Strategies

 Testing strategies are ways of approaching
the testing process

 Different strategies may be applied at
different stages of the testing process

 Strategies covered

 Top-down testing

 Bottom-up testing

 Back-to-back testing

Fall 2013CSci 5801 - Dr. Mats Heimdahl23

Fall 2013CSci 5801 - Dr. Mats Heimdahl24

A

B

T1

T2

T3

C T4

A

B

T1

T2

T3

D
T5

C T4

A

B

T1

T2

T3

Incremental Testing

An integration testing strategy in which you
test subsystems in isolation, and then
continue testing as you integrate more and
more subsystems

Fall 2013CSci 5801 - Dr. Mats Heimdahl25

Level 1

Level-2 Stubs

Level 1

Level 2 Level 2 Level 2 Level 2

Level-3 Stubs

Testing Sequence

Top-down testing

Fall 2013CSci 5801 - Dr. Mats Heimdahl27

Level N Level N Level N Level N Level N

Testing
Sequence

Level N-1 Level N-1 Level N-1

Test Drivers

Test Drivers

Bottom-Up Testing

Software Testing:
Requirements Based
(Black box)

Sommerville Chapter 8
(we will come back here later)

Fall 2013 CSci 5801 - Dr. Mats Heimdahl 1

Black and White Box

Fall 2013CSci 5801 - Dr. Mats Heimdahl3

Partition Testing

 Basic idea: Divide program input space into (quasi-)
equivalence classes

 Underlying idea of specification-based, structural, and fault-
based testing

Fall 2013CSci 5801 - Dr. Mats Heimdahl17

FSE’98 Tutorial: SW Testing and Analysis:
Problems and Techniques (c) 1998
Mauro Pezzè & Michal Young

Equivalence Class?

 A group of tests form an equivalence
class if

 They all test the same thing

 If one test reveals a fault, the other ones
(probably) will too

 If a test does not reveal a fault, the other ones
(probably) will not either

Fall 2013CSci 5801 - Dr. Mats Heimdahl9

Equivalence Partitions

Fall 2013CSci 5801 - Dr. Mats Heimdahl12

More than 10Between 4 and 10Less than 4

Number of input values

2
7

15

More than 99,999Between 10,000 and 99,999Less than 10,000

Input values

5,000
150,000

50,000

Fall 2013CSci 5801 - Dr. Mats Heimdahl16

Equivalence Partitions Revisited

More than 99,999Between 10,000 and 99,999Less than 10,000

Input values

9,999 10,000 99,999 100,000
50,0000 5,000

150,000

More than 10Between 4 and 10Less than 4

Number of input values

43
7

10 11
2

0
100

Do Not Forget Invalid Inputs!

 Most likely to cause problems
 Exception handling is a well know problem

area

 People tend to think about what the program
shall do, not what it shall protect itself against

 Take this into account with all selection
criteria we have discussed this far

Fall 2013CSci 5801 - Dr. Mats Heimdahl25

Structural Testing

Using the code to measure test adequacy
(and derive test cases)

Structural Testing

 Sometime called white-box testing

 Derivation of test cases according to program
structure

 Knowledge of the program is used to identify test
cases

 Objective is to exercise a certain percentage
of statements, branches, or condition (not all
path combinations)

 Why??

Fall 2012CSci 5801 - Dr. Mats Heimdahl3

Program Flow Graphs

 Describes the program control flow

 Used as a basis for test data selection

 Used as a basis for computing the
cyclomatic complexity

 Complexity = Number of edges - Number of
nodes +1

 Number of decision points + 1

 N way branch counts as N-1 decision points

Fall 2012CSci 5801 - Dr. Mats Heimdahl5

Cyclomatic Complexity

 CC = E – N + 1 when every exit point is
connected back to the entry point in the control
flow graph.

 CC = E – N + 2 when exit point is not connected
back to entry point

Fall 2012 CSci 5801 - Dr. Mats Heimdahl 1

Fall 2012CSci 5801 - Dr. Mats Heimdahl6

1 if (1==x) {
2 y=45;
3 }
4 else {
5 y=23456;
6 }
7 /* continue */

1

2 5

7

If-then-else

Structural Coverage Testing

 (In)adequacy criteria

 If significant parts of program structure are not tested, testing is
surely inadequate

 Control flow coverage criteria

 Statement (node, basic block) coverage

 Branch (edge) coverage

 Condition coverage

 Path coverage

 Data flow (syntactic dependency) coverage

 Attempted compromise between the impossible and the
inadequate

Fall 2012CSci 5801 - Dr. Mats Heimdahl9

White Box-based Coverage Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23

A Program with a BugA Program with a BugA Program with a BugA Program with a Bug

� This following program inputs an integer x
– if x < 0, transforms it into a positive value before invoking foo-1 to compute

the output z

– if x≥0, compute z using foo-2

232323

Where is the bug?Where is the bug?Where is the bug?Where is the bug?

There should have been an else clause for x≥≥≥≥0 before this
statement.

White Box-based Coverage Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 24

Is Statement Coverage Sufficient?Is Statement Coverage Sufficient?Is Statement Coverage Sufficient?Is Statement Coverage Sufficient?

� Consider a test set T={ t1:<x= –5>}.

� It is adequate with respect to statement coverage criterion,
but does not reveal the bug.

242424

There should have been an else clause for x≥≥≥≥0 before this statement.

White Box-based Coverage Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 25

Is Decision Coverage Sufficient?Is Decision Coverage Sufficient?Is Decision Coverage Sufficient?Is Decision Coverage Sufficient?

� Consider another test set T'={ t1:<x = –5> t2:<x = 3>}

� T' is decision adequate, but not T.

� Also, T' reveals the bug, but not T.

� This example illustrates how and why decision coveragemight helpin
revealing a bug that is not revealedby a test set adequate with respect to
statement coverage.

252525

There should have been an else clause for x≥≥≥≥0 before this statement.

We Have Learned

 Test Coverage Measures

 Statement, branch, and path coverage

 Condition coverage (basic, compound)

 Data flow coverage

 Test coverage measures ensure that
statements have been executed to some level

 However, it is not possible to exercise all
combinations

Fall 2013CSci 5801 - Dr. Mats Heimdahl20

When to Stop Testing
When have we tested enough?

Fall 2013CSci 5801 - Dr. Mats Heimdahl1

Today’s Topics

 How do we know when we are done?

 Stopping Criteria

 Coverage

 Budget

 Plan

 Reliability

 Mutation analysis

Fall 2013CSci 5801 - Dr. Mats Heimdahl2

Software Reliability
Categorizing and specifying the reliability of software systems

Courtesy Prof. Mats Heimdahl

Software Reliability

 Cannot be defined objectively

 Reliability measurements which are quoted out of context
are not meaningful

 Requires operational profile for its definition

 The operational profile defines the expected pattern of
software usage

 Must consider fault consequences

 Not all faults are equally serious

 System is perceived as more unreliable if there are more
serious faults

Fall 2013CSci 5801 - Dr. Mats Heimdahl11

Reliability Metrics

 Probability of failure on demand

 This is a measure of the likelihood that the system
will fail when a service request is made

 POFOD = 0.001 means 1 out of 1000 service
requests result in failure

 Rate of fault occurrence (ROCOF)

 Frequency of occurrence of unexpected behavior

 ROCOF of 0.02 means 2 failures are likely in each
100 operational time units

Fall 2013CSci 5801 - Dr. Mats Heimdahl14

Reliability Metrics

 Mean time to failure

 Measure of the time between observed failures

 MTTF of 500 means that the time between failures
is 500 time units

 Availability

 Measure of how likely the system is available for
use. Takes repair/restart time into account

 Availability of 0.998 means software is available for
998 out of 1000 time units

Fall 2013CSci 5801 - Dr. Mats Heimdahl15

Mutation Testing

 An approach to investigating the quality of your test
data

 Create a second version of your software with some
minor change

 Introduce a “mutation”

 Run the test cases and see if they reveal the mutation
(an artificial fault)

 If yes – Good test data

 If no – Bad test data

Fall 2013CSci 5801 - Dr. Mats Heimdahl32

Fall 2013CSci 5801 - Dr. Mats Heimdahl33

General Idea

Original
Software

Test Data

Output

????
Output

Mutant
Software

Mutate

