Ajitha Rajan

Inf2C-SE
Summary Lecture

e

How Software Development Works

Why is Software Development so %$##% Hard? (L)

" Complexity
" Software systems are the most complex artifacts ever created
" [nvisibility
" We cannot see the progress of the development
® Changeability
= Software is “easy” to change
" Conformity

" The software will have to be molded to fit whatever external
constraints may be imposed

® Structured set of activities required to develop a
software system

Specification
Design
Validation
Evolution

= Activities vary depending on the organization and
the type of system being developed

= Must be explicitly modeled if it is to be
managed

® The Waterfall Model

Separate and distinct phases of specification and
development

= Evolutionary Development
Specification and development are interleaved
= Spiral Model
Let risk analysis drive your process
® Incremental Development
Deliver your system in small planned increments

" Agile and eXtreme Programming

® Understandability

Is the process defined and
understandability

= Visibility
Is the process progress
externally visible

" Supportability

Can the process be supported
by CASE tools

= Acceptability

Is the process acceptable to
those involved in it

" Reliability

Are process errors discovered
before they result in product errors

® Robustness

Can the process continue in spite
of unexpected problems

® Maintainability

Can the process evolve to meet
changing organizational needs

" Rapidity

How fast can the system be
produced

Requirements
Definition

Systems and

Software Design |

Implementation
and Unit Testing

Integration and
System Testing

Operation and
Maintenance

ﬁ .
Initial
Version
Intermediate
Versions
Final
Version

Outline
Description Development

|

Validation

® Evolutionary prototyping

Objective is to work with customers and to evolve a final
system from an initial outline specification.

Typically starts with well-understood requirements
" Throw-away prototyping
Objective is to understand the system requirements.

Typically starts with poorly understood requirements

Determine objectives,
alternatives, and
constraints

Risk analysis

Risk analysis

Risk analysis

Evaluate alternative,
identify and resolve risk

Operational
prototype

Risk Prototype-3
dnalysis)
Review y Prototype-2
Prototype-1
Requirements plan imuylar
Lifce1 cycle larf Concept of Ulatigns, Models /},
yeep operation 7 P€Nchmgpy
S/IW Product _
requirementS design E)Et‘aIIEd
Development plan Requirements esign
validatien Code
Design Unit test
Integration and test plan V&V nit tes

Plan next phase Service

Integration test

Acceptance test

Develop and verify
next-level product

" System is developed and delivered in increments after
establishing an overall architecture

¥ Users may experiment with delivered increments while
others are being developed

Therefore, these serve as a form of prototype system

" Intended to combine some of the advantages of prototyping
but with a more manageable process and better system
structure

¥ [nception
® Elaboration

= Construction
Many iterations

® Transition

Inception [} Elaboration [}

O
o
-
(%))
—
=
c
(@]
=
o
5
[EEN

¢ uononisuo)

€ uonoNNSuU0)D

U uonoNSuU0D

)

Transition

Agile processes

What the spiral models were reaching towards was that software
development has to be agile: able to react quickly to change.

The Agile Manifesto http://agilemanifesto.org:

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we
have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we
value the items on the left more.

http://agilemanifesto.org

12 principles of Agile

» Customer satisfaction by rapid delivery of useful software

» Welcome changing requirements, even late in development

» Working software is delivered frequently (weeks rather than
months)

» Working software is the principal measure of progress

Sustainable development, able to maintain a constant pace

» Close, daily co-operation between business people and
developers

» Face-to-face conversation is the best form of communication
(co-location)

» Projects are built around motivated individuals, who should be
trusted

» Continuous attention to technical excellence and good design

» Simplicity- The art of maximizing the amount of work not
done - is essential

» Self-organizing teams

» Regular adaptation to changing circumstances

v

Extreme Programming

One variant: Extreme Programming (XP) is

“a humanistic discipline of software development, based on values
of communication, simplicity, feedback and courage”

People: Kent Beck, Ward Cunningham, Ron Jeffries, Martin Fowler,
Erich Gamma...

More info: www.extremeprogramming.org,
Beck “Extreme Programming Explained: Embrace Change”

XP Practices

The Planning Game
Small releases
Metaphor

Simple design
Testing

Refactoring

Pair programming
Collective ownership
Continuous integration
40-hour week
On-site customer
Coding standards

Where is XP applicable?

The scope of situations in which XP is appropriate is somewhat
controversial. Two examples

» there are documentated cases where it has worked well for
development in-house of custom software for a given
organisation (e.g. Chrysler).

» A decade ago it seemed clear that it wouldn’t work for
Microsoft: big releases were an essential part of the business;
even the frequency of updates they did used to annoy people.
Now we have automated updates to OSs, and Microsoft is a
Gold Sponsor of an Agile conference

XP does need: team in one place, customer on site, etc. “Agile” is
broader.

Waterfall

Time

Scope

[
»

lterative

XP

Slide adopted from Beck

" High-level description of what a system should do

" Must be detailed enough to distinguish between the
“right” and the “wrong” system

® Capture the what not the how

" The specification process must involve all stakehaolders

Customers
Engineers
Regulatory agencies

Users

" Requirements capture what a proposed system shall do
But avoids design detail as much as possible

Written in the user’s language

® Poor requirements are the source of all evil

® Requirements problems are the
Most costly
Most difficult to correct (they are conceptual)

Market
Requirements
Definition

Software
Requirements
Specification

Software Design
Description

i

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers
System architects
Software developers

3 Common Problems

* Poorly structured requirements document
* Poorly written individual requirements

* Untestable requirements (future lecture)

" Avoid requirements “fusion”
One reguirement per requirement specification
¥ Be precise
No vague requirements
¥ Be rigorous in defining requirements test cases

If you cannot define how to test if a requirement is satisfied,
you probably have a poor requirement

" Attach a person to each requirement

People are much less likely to add “the kitchen sink” if their
name is there — no gold plating

" Correct
The requirement is free from faults.
® Precise, unambiguous, and clear

Each item is exact and not vague; there is a single
Interpretation; the meaning of each item is understood; the
specification is easy to read.

= Complete
The requirement covers all aspects of the user function.

¥ Consistent

No item conflicts with another item in the specification.

¥ Relevant

Each item is pertinent to the problem and its solution.
" Testable

During program development and acceptance testing, it will be
possible to determine whether the item has been satisfied.

® Traceable

Each item can be traced to its origin in the problem environment.

¥ Feasible

Each item can be implemented with the available techniques,
tools, resources, and personnel, and within the specified cost and
schedule constraints

= Complete

All user requirements have been included. Do not forget
abnormal and boundary cases.

¥ Consistent
No item conflicts with another item in the specification.

" The requirements shall be at a consistent level of
detall

" Manageable and Modifiable

Things will change and we must be able to accommodate
the inevitable requirements evolution.

Feasibility

Study

v
Feasibility
Report

Requirements
Analysis

v

System
Models

|

Requirements
Definition

A 4

Definition of
Requirements

Requirements
Document

Requirements
Specification

:

Specification of
Requirements

¥ A use-case captures some user visible function

" This may be a large or small function

Depends on the level of detail in your modeling effort
¥ A use-case achieves a discrete goal for the user
= Examples

Format a document

Request an elevator

" How are the use cases found (captured or elicited)?

Use Case

POST

System Boundary

Refund a Purchased Item

Cashier Customer

" The system boundary will affect your
actors and use-cases

POST

Camr\

Refund a Purchased Item

Custom er

M H

Adapted from Larman “Applying UML and Patterns”

Use case: Power Up

Actors: Home Owner (initiator)

Type: Primary and essential

Description:The Home Owner turns the power on. Each room
IS temperature checked. If a room is below the
the desired temperature the valve for the room is
opened, the water pump started, the fuel valve
opened, and the burner ignited.
If the temperature in all rooms is above the desired
temperature, no actions are taken.

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases: None

" In short, always!!!
® Requirements is the toughest part of software
development
Use-Cases is a powerful tool to understand

Who your users are (including interacting systems)
What functions the system shall provide
How these functions work at a high level

® Spend adequate time on requirements and in the
elaboration phase

If you can’t test it, it is not a requirement!

Test Case 1
Input

Artificially raise the temperature above threshold
Test procedure

Measure the time it takes for the alarm to come on
Expected output

The alarm shall be on within 2 seconds

® Do yourself and the testing group a favor—Develop
Test Cases for Each Requirement

" If the requirement cannot be tested, you most likely
have a bad requirement

Rewrite so it is testable
Remove the requirement
Point out why this is an untestable requirement

® Your requirements and testing effort will be
greatly improved

Mainly “Will 1t Work?”

¥ Requirements are always In the system
domain

B Software specification Is in the computer
domain

® There are several levels of abstraction In
between

Abstract away some details but not others

W — The World Assumptions (domain model)
R — The Requirements

S — The system specification
P — The Program (running on the machine)
M — The machine physically implementing the system

Environment

System

Interface

" Functional design

The system is designed from a functional viewpoint

The system state is centralized and shared between the
functions operating on that state

" Object-oriented design
The system is viewed as a collection of interacting objects

The system state is de-centralized and each object
manages its own state

Objects may be instances of an object class and
communicate by exchanging messages

® Design is a creative process

" Design activities include architectural design,
system specification, component design, data
structure design and algorithm design

" Functional decomposition considers the system
as a set of functional units

® Object-oriented decomposition considers the
system as a set of objects

® To discuss some design quality attributes

“Clarity”
Simplicity
Modularity
Coupling
Cohesion
Information hiding
Data encapsulation
“Ilities”

« Adaptability

* Traceabillity

High Cohesion

Low Coupling

B Structural Models

" Describes the structure of the objects in a system

= Structure of individual objects (attributes and
operations)

" Relationships between the objects (inheritance,
sharing, and associations)

" Clustering of objects in logical packages and on the
actual hardware

BDynamic models (behavioral models)
" The aspects related to sequencing of operations
" Changes to attributes and sequences of changes
" The control aspects of the system

Class name

attribute- L datatype-1 = defautt-value-1
aftribute-2 . data-type-2 = defautt-value-2
attribute-3 . data-type-3 = defauttvalue-3

(e}

neration-1(argument-ist-1) : resut-ype-L
neration-2(argument-ist-2) : resut-ype-2
peration-3(argument-ist-3) : resut4ype-3

(e}

(]

B Associations can have properties the same way objects have

properties
Person .
ompan
— v e [pay _Hovv_ represent salary and
age: ineger name; Sting JOb title?
SSN: nteger addess: Sting
address: Sting
Pestr Company
T Sng 0.f Works-or [‘ . .
i e rane:Sting Use a link attribute!
SSN: integer adoress: Sting
address: Sting

salay: ineger
Jobitle; String

® Do not confuse the is-a
relation (inheritance) with
the is-part-of relation
(aggregation)

B Use inheritance for
special cases of a
general concept

Car

Wheel

Body

B Use aggregation for par S_
explosion i

Compact

Gearhox

Engine

Iy 4

Transfer
Case

Control Panel

B

On-Off Switch

setting

[IsaunoN

Thermostat

desired-temp

[] Pushes Adjusts[]

Operator

Room

Water Valve

Furnace Water Pump |0 Runs
[<? |
Burner Fuel Valve
0 Opens/Closes
[0 Ignites
1.*
1.* -
= | <
T 3
D 8—
Temp Sensor % =
temperature Controller

winterface:
Person

firsthlame : String
lastName : String

Professor

salary : Dollars

Student

major @ Siring

A class and an interface differ:

A class can have an actual instance of its type, whereas an
Interface must have at least one class to implement it. In UML 2, an
Interface is considered to be a specialization of a class modelling
element. Therefore, an interface is drawn just like a class, but the
top compartment of the rectangle also has the text "«interface»", as

shown in Figure.

= A class that has no direct instances but whose
descendants have direct instances

" The abstract class does not have a direct meaning

" The abstract class only has a meaning as an

abstraction

Shape

move() {abstract

?

Triangle

move)

Rectangle

move()

Circle

move)

Point

Polygon

Circle

radius

Cfloat

Style

-color:TColor
SsFilled bhool

cahstracty
InputStream

«Interfacen
Datalnput

OrderReader

DatalnputStream

Fowler Chapters 4 and 11

BAnN Interaction Diagram typically captures a

use-case
" A sequence of user interactions

BSequence diagrams
" Highlight the sequencing of the interactions
between objects
BCollaboration diagrams
" Highlight the structure of the components
(objects) involved in the interaction

Use case: Power Up

Actors: Home Owner (initiator)

Type: Primary and essential

Description: The Home Owner turns the power on. Each room
Is temperature checked. If a room is below the
the desired temperature the valve for the room is
opened, the water pump started, the fuel valve
opened, and the burner ignited.
If the temperature in all rooms is above the desired
temperature, no actions are taken.

Cross Ref.: Requirements XX, YY, and ZZ

Use-Cases: None

Control Panel

i

On-Off Switch

[IssynoN

Thermostat

desired-temp

setting
[0 Pushes Adjusts[]
Operator

Room

Furnace

Y

0 Runs

Water Pump

Burner

Fuel Valve

0 Opens/Closes

Water Valve

0 Ignites
1..*
*
1.. =
=5
| T |3
S 8
Temp Sensor % =
temperature Controller

a Home Owner |the OnOff Swatch the Controller Room the Water Pump

System On .
powerOn() .
[for all rooms] *[fior all rooms]
tenq:EtﬂtUFmEdtTenq]
[temp Status—low] pumpOn{)
(S
openVahs)
=
startBumen)

Whentheowner
turns the system on

the on switch notifies
the controller

The controller
creates aroom object
foreach room in the
building

Therooms sample
the temperature in
the toom every 5 s,
Whenalow temp is
detected the room
notifies the
controller.

a Home Owner

the 0n-0ffSwitch

the Controller

System 0n I

» jpower0n|) |

Flforeach room in house]

new

the WaterPump

I_______

templow

aRoom

-

[templow]
pump0n()

checkTemp()

[tem pLow]
openValve()

[templow]
startBurner()

v

e n et B

\ 4

I
I
I
I
I
I
I
I
I
I
I
I
|
I
d
I
I
|
I

Order Entry
W indow

L prepare()

Order

5:needsReorder:=needsToReorder()

prepare() 3 hasStock = check() //\\

2 *fforallorderlines):

Stock Item

W interfline :OrderLine /<::::::::::::::::::::::::: W interstock :

b fhasStock]:
remove()

T o[hasStock]:new 6 :[needsReorder]:

new

Delivery Item

a Reorder Item

lighlights the structure of the components

(objects) involved In the interaction

" Better shows how the various objects are
related to each other

" Can help you identify which classes to put in a
larger module

BDoes the same thing as a sequence
diagram, but with a different focus
BAgain, clarity Is the goal — use comments

®\Vhen you want to clarify and explore

single use-cases involving several objects
" Quickly becomes unruly if you do not watch it

B|f you are interested In one object over
many use-cases — state transition
diagrams

B|f you are interested in many objects over
many use cases — activity diagrams

BShows how activities are connected

together
" Shows the order of processing
" Captures parallelism

BMechanisms to express
" Processing
" Synchronization
" Conditional selection of processing

Instructor

W orite
Assignment
Subm it
Assignment

W rite Solution

Subm it
Solution

HACS

[subm

M oail
Assignment

Student

ission tim e]

Solve
Assignment

SubmitSolved

Grade
Assignment

Mail Solution

Assignment

Hitthe Pub

Review
Solution

BThey are glorified flowcharts
" Very easy to make a traditional data-flow
oriented design
BSwitching to the OO paradigm iIs hard

enough as itis
" Extensive use of activity charts can make this
shift even harder
®However....
" Very powerful when you know how to use them
correctly

Fowler, Chapter 10

" Event

" Something that happens at a point in time

" Operator presses self-test button

" The alarm goes off

B Condition

" Something that has a duration

" The fuel level is high

" The alarm is on

B State

" An abstraction of the attributes and links of an object (or entire
system)

" The controller is in the state self-test after the self-test button
has been pressed and the rest-button has not yet been
pressed

" The tank is in the state too-low when the fuel level has been
below level-low for alarm-threshold seconds

Transition label: trigger-event [guard]/activity

® Actions are
performed when a
transition is taken
or performed while
In a state

® Actions are
terminated when
leaving the state

Jn-hook / disconnect line

de |
off-hook
« on-hook Dial tone digit(x)
do/ sound dial tone [
 digigo——| Dialing
< on-hook
<on-hook | Busy tone | number-busy Vvalid—number
0n-nook —roured{do/ find connection
« on-haaok Ringing
do/ ring bell

dalled-phone-answers / connect line

A 4

Connected

called-phone-hangs-up / disconnect line

A 4

on-hook

Disconnected

on-hook

ldle |~ | Dial tone

off-hook do/ sound dial tone
® Group states with dial(x) [x is a digi]
: I dial(x) [x = *]
Simiiar Make Call /
characteristics ——
: : stapblisn C
® Enables information x| RV VeieeMail
hldlng Dialing
= Simplifies the \@'id-number
diagrams numperbusy | Connecting
:on-hoc K do/ find connection
do/ busy tone /)uted
Ringing
do/ ring bell
i
/called-phone-answers/
on-hogk / disconnect line connect line
« Connected

called-phone-hangs-up /
‘;iisconnect line

on-hook

Disconnected

Design Patterns

Guidelines, not solutions

“Each pattern describes a problem which
occurs over and over again in our
environment, and then describes the core of
the solution to that problem in such a way
that you can use this solution a million times
over, without ever doing It the same way
twice.”

- Christopher Alexander

12

Categories of design patterns

1. Creational

Decouple a client from objects it instantiates.
2. Structural

Clean organization into subsystems.
3. Behavioral

Describe how objects interact.

13

Why use design patterns?

1. Good examples of OO principles.

2. Faster design phase.

3. Evidence that system will support change.

4. Offers shared vocabulary between designers.

Observer Pattern - In Practice

<<interface>> <<interface>>
Observable Observer
observers
addObserver(Observer) » | update()
removeObserver(Observer) *
notify() A
A
i ConcreteObserver
ConcreteObservable .
subject _
ConcreteObservable subject
State state <
List<ConcreteObserver> observers 1 update()

: setSubject(ConcreteObservable)
addObserver(ConcreteObserver) notify() { _ e —_—
removeObserver(ConcreteObserver) for observer in observers{ =
notify() '-----crrrrrereerenen .. observer.update()
getState() } update(){
setState() } p state= subject.getState()

}

——— 5

Why not use a design pattern?

What are the drawbacks to using patterns?
® Potentially over-engineered solution.

® |ncreased system complexity.

® Design inefficiency.

How can we avoid these pitfalls?

45

Sommerville Chapter 6
The High-Level Structure of a Software Intensive System

Slides courtesy Prof.Mats Heimdahl

BSoftware architecture Is primarily
concerned with partitioning large systems
iInto smaller ones that can be created
separately, that individually have business
value, and that can be straightforwardly
iIntegrated with one another and with
existing systems.

Mike Whalen

BSystem structuring
" The system Is decomposed into several
principal sub-systems and communications
between these sub-systems are identified

B Control modeling
" A model of the control relationships between the
different parts of the system is established
®Modular decomposition

" The identified sub-systems are decomposed
Into modules

go 100

120
Eﬂ\ 80 60 4 . 140

40 of
T "’ w0
20 100

\“G']BU

Performance EaS_»e of
Maintenance

1.|'- i

Testability

Usability

BThe software architect is responsible for
deriving a structural system model, a
control model and a sub-system
decomposition model

B arge systems rarely conform to a single
architectural model

BSystem decomposition models include
repository models, client-server models
and abstract machine models

BControl models include centralized control

and event-driven models

®Modular decomposition models include
data-flow and object models
BDomalin specific architectural models are

abstractions over an application domain

" They may be constructed by abstracting from
existing systems or may be idealized reference
models

Sommerville Chapter 8 . o

Slides from Prof. Mats Heimdahl

= Verification

The process of evaluating a system or
component to determine whether the
products...satisfy the conditions imposed...

® Validation

The process of evaluating a system or
component...to determine whether it satisfies
specified requirements.

Validation: Are we building the right product?

Customer
Requirements Software

Verification: Are we building the product right?

Specification Implementation

" DynamicV &V

Concerned with exercising and observing product
behavior

Testing
®StaticV &V

Concerned with analysis of the static system
representation to discover problems

Proofs

Inspections

Static
Verification

Requirements High-Level Formal Detailed

Specification Design Specification Design Program

Dynamic

Prototype .
yp Evaluation

What is a Test?

Test Data

I1t?
Software result
under Test Oracle

" Failure

An execution that yields an erroneous result

® Fault

The source of the failure

" Error

The mistake that led to the fault being
Introduced in the code

® Unit testing

Testing of individual components
® Module testing
Testing of collections of dependent components
® Sub-system testing
Testing collections of modules integrated into sub-systems
" System testing
Testing the complete system prior to delivery
" Acceptance testing

Testing by users to check that the system satisfies
requirements

Sometimes called alpha and beta testing

Requirements

Analysis
Design Integration
Design Sl
Delivery — | ACCeptance

Maintenance <) | Regression

" Testing strategies are ways of approaching
the testing process

" Different strategies may be applied at
different stages of the testing process

B Strategies covered
Top-down testing
Bottom-up testing

Back-to-back testing

An integration testing strategy in which you
test subsystems in isolation, and then
continue testing as you integrate more and
more subsystems

Testing Sequence

v
v

Level 1 Level 1

Level 2 Level 2 Level 2 Level 2

Level-3 Stubs

Level-2 Stubs

Test Drivers A

Sequence

Level N-1 Level N-1 Level N-1

Test Drivers

Level N Level N Level N Level N Level N

Sommerville Chapter 8
(we will come back here later)

Fall 2013 CSci 5801 - Dr. Mats Heimdabhl

Comparison among Black-Box & White-Box Tests

" White
& Box
. -
K5l
¥
=

www.softw aretestinggenius.com

® Basic idea: Divide program input space into (quasi-)
equivalence classes

Underlying idea of specification-based, structural, and fault-
based testing

FSE’98 Tutorial: SW Testing and Analysis:
Problems and Techniques (c) 1998
Mauro Pezze & Michal Young

" A group of tests form an equivalence
class if

They all test the same thing

If one test reveals a fault, the other ones
(probably) will too

If a test does not reveal a fault, the other ones
(probably) will not either

50,000
5.000 ¥ 150,000

Less than 10,000 Between 10,000 and 99,999 More than 99,999

Input values

Less than 4 Between 4 and 10 More than 10

Number of input values

150,000
0 5,000 50,000

/ * 9,999 10,000 ¥
Less than 10,000 Between 10,000 and 99,999 More than 99,999

99,999 100,000

Input values

0 2 7 100
‘ * 3 /4 10 11
Less than 4 Between 4 and 10 More than 10

Number of input values

" Most likely to cause problems

Exception handling is a well know problem
area

People tend to think about what the program
shall do, not what it shall protect itself against

® Take this into account with all selection
criteria we have discussed this far

Using the code to measure test adequacy
(and derive test cases) e o A

" Sometime called white-box testing

® Derivation of test cases according to program
structure

Knowledge of the program is used to identify test
cases

® Objective is to exercise a certain percentage
of statements, branches, or condition (not all
path combinations)

Why??

® Describes the program control flow

¥ Used as a basis for test data selection

¥ Used as a basis for computing the
cyclomatic complexity

B Complexity = Number of edges - Number of
nodes +1

Number of decision points + 1

N way branch counts as N-1 decision points

B CC =E-N+1when every exit point Is
connected back to the entry point in the control
flow graph.

B CC =E-N + 2when exit point is not connected
back to entry point

NOoOO A, WDNR

if (1==x) {
y=45;

}

else {
y=23456,
}

/* continue

*/

" (In)adequacy criteria

If significant parts of program structure are not tested, testing is
surely inadequate

" Control flow coverage criteria
Statement (node, basic block) coverage
Branch (edge) coverage
Condition coverage
Path coverage

Data flow (syntactic dependency) coverage

= Attempted compromise between the impossible and the
Inadequate

A Program with a Bug

* This following program inputs an integer

—if x< 0, transforms it into a positive value beforeakwg foo-1to compute
the outputz

—if x=0, compute z usinfpo-2

begin
int X, Z;
input (x); .
w0 | Where is the bug?
z:foo-,1 (X);
output(z);

end

W~ OO kWM =

There should have been an else clause for x>0 beforethis
Statement.

White Box-based Coverage Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) 23

Is Statement Coverage Sufficient?

 Consider a test s@t={t,;:<x= —5>}.

* |t is adequate with respectstatementoverage criterion,
but does not reveal the bug.

begin
int X, Z;
input (x);
if(x<0)
X =-X;
z=foo-1(x);
output(z);

end

W~ O O AWl =

There should have been an else clause for x>0 beforethis statement.

White Box-based Coverage Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)

Is Decision Coverage Sufficient?

e Consider another test SBt{t;:<x = -5> t,:<x = 3>}
* T'is decision adequate, but riot
 Also, T' reveals the bug, but ndt

begin
int X, Z;
input (x);
if(x<0)

X =-X;
z=foo-1(x);
output(z);

end

W~ Ok WKN =

There should have been an else clause for x>0 beforethis statement.

* This example illustratesow and why decision coverageght helpin
revealing a bug that is not revealby a test set adequate with respect to
statement coverage

White Box-based Coverage Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas) >

" Test Coverage Measures
Statement, branch, and path coverage
Condition coverage (basic, compound)

Data flow coverage

¥ Test coverage measures ensure that
statements have been executed to some level

However, it Is not possible to exercise all
combinations

When have we tested enough? e (SR .

® How do we know when we are done?
® Stopping Criteria

Coverage

Budget

Plan

Reliability

Mutation analysis

Categorizing and specifying the reliability of software systems

Courtesy Prof. Mats Heimdahl

® Cannot be defined objectively

Reliability measurements which are quoted out of context
are not meaningful

® Requires operational profile for its definition

The operational profile defines the expected pattern of
software usage

® Must consider fault consequences
Not all faults are equally serious

System is perceived as more unreliable if there are more
serious faults

® Probability of failure on demand

This is a measure of the likelihood that the system
will fail when a service request is made

POFOD = 0.001 means 1 out of 1000 service
requests result in failure

" Rate of fault occurrence (ROCOF)

Frequency of occurrence of unexpected behavior

ROCOF of 0.02 means 2 failures are likely in each
100 operational time units

® Mean time to failure
Measure of the time between observed failures

MTTF of 500 means that the time between failures
IS 500 time units

= Availability

Measure of how likely the system is available for
use. Takes repair/restart time into account

Avallability of 0.998 means software is available for
998 out of 1000 time units

® An approach to investigating the quality of your test
data

" Create a second version of your software with some
minor change

Introduce a “mutation”

® Run the test cases and see If they reveal the mutation
(an artificial fault)

If yes — Good test data

If no — Bad test data

Test Data

Original Mutate Mutant
Software Software

Output — Output
2?77

