
The Process
Sommerville Chapter 2 and 3

Slides courtesy Prof. Mats Heimdahl

Today’s Goals

 Introduce and/or Review Software
Development Processes

 Definitions, Processes, and Process Models

 Examples of Software Process Models

CSci 5801 - Fall 2013Mats Heimdahl2

Why is Software Development so %$##% Hard? (L)

 Complexity

 Software systems are the most complex artifacts ever created

 Changeability

 Software is “easy” to change

 Invisibility

 We cannot see the progress of the development

 Conformity

 The software will have to be molded to fit whatever external
constraints may imposed

CSci 5801 - Fall 2013Mats Heimdahl3

Code and Fix

CSci 5801 - Fall 2013Mats Heimdahl4

Implementation

We Need a Software Process

 Structured set of activities required to develop a
software system

 Specification

 Design

 Validation

 Evolution

 Activities vary depending on the organization and the
type of system being developed

 Must be explicitly modeled if it is to be
managed

CSci 5801 - Fall 2013Mats Heimdahl5

Code and Fix Model (L)

 Applicability

 Used for small, simple projects

 Potential Problems

 Quality

 Maintainability

CSci 5801 - Fall 2013Mats Heimdahl6

Generic Software Process Models

 The Waterfall Model

 Separate and distinct phases of specification and development

 Evolutionary Development

 Specification and development are interleaved

 Spiral Model

 Let risk analysis drive your process

 Incremental Development

 Deliver your system in small planned increments

 Agile and eXtreme Programming

CSci 5801 - Fall 2013Mats Heimdahl7

Process Characteristics

 Understandability

 Is the process defined and
understandability

 Visibility

 Is the process progress
externally visible

 Supportability

 Can the process be supported
by CASE tools

 Acceptability

 Is the process acceptable to
those involved in it

 Reliability

 Are process errors discovered
before they result in product errors

 Robustness

 Can the process continue in spite
of unexpected problems

 Maintainability

 Can the process evolve to meet
changing organizational needs

 Rapidity

 How fast can the system be
produced

CSci 5801 - Fall 2013Mats Heimdahl8

Waterfall Model

CSci 5801 - Fall 2013Mats Heimdahl9

Requirements
Definition

Systems and
Software Design

Implementation
and Unit Testing

Integration and
System Testing

Operation and
Maintenance

Waterfall Model

CSci 5801 - Fall 2013Mats Heimdahl10

Requirements
Definition

Systems and
Software Design

Implementation
and Unit Testing

Integration and
System Testing

Operation and
Maintenance

Waterfall Model Documents

CSci 5801 - Fall 2013Mats Heimdahl11

Activity Output document

Requirements analysis Feasibility study, outline the requirements

Requirements definition Requirements document

System specification Functional specification, Acceptance test plan,
Draft User’s manual

Architectural design Architectural specification, system test plan

Interface design Interface specification, Integration test plan

Detailed design Design specification, Unit test plan

Coding Program code

Unit testing Unit test report

Module testing Module test report

Integration testing Integration test report, Final user’s manual

System testing System test report

Acceptance testing Final system and documentation

Waterfall Model (L)

 Problems
 Inflexible model not accommodating change

 You seldom know the requirements that early

 Does not accommodate evaluation of project risk

 Applicability
 Projects where the requirements are very well known

 Low risk projects

CSci 5801 - Fall 2013Mats Heimdahl12

Evolutionary Development

CSci 5801 - Fall 2013Mats Heimdahl13

Concurrent Activities

Outline
Description

Specification

Development

Validation

Initial
Version

Intermediate
Versions

Final
Version

Prototyping Benefits

 Misunderstandings between software users
and developers are exposed

 Missing services may be detected

 Confusing services may be identified

 A working system is available early in the
process

 The prototype may serve as a basis for
deriving a system specification

CSci 5801 - Fall 2013Mats Heimdahl14

Evolutionary Development

 Evolutionary prototyping

 Objective is to work with customers and to evolve a final
system from an initial outline specification.

 Typically starts with well-understood requirements

 Throw-away prototyping

 Objective is to understand the system requirements.

 Typically starts with poorly understood requirements

CSci 5801 - Fall 2013Mats Heimdahl15

Evolutionary Prototyping

CSci 5801 - Fall 2013Mats Heimdahl16

Develop Abstract
Specification

Build Prototype
System

Use Prototype
System

Deliver
System

System
Adequate?

Yes

No

Evolutionary Prototyping

 Must be used for systems where the specification
cannot be developed in advance

 AI systems and user interface systems

 Based on techniques which allow rapid system
iterations

 Verification is impossible as there is no specification

 Validation means demonstrating the adequacy of the
system

CSci 5801 - Fall 2013Mats Heimdahl17

Evolutionary Prototyping Problems

 Existing management processes assume an
“organized” model of development

 Continual change tends to corrupt system structure
so long-term maintenance is expensive

 Specialist skills are required which may not be
available in all development teams

 Organizations must accept that the lifetime of
systems developed this way will inevitably be short

CSci 5801 - Fall 2013Mats Heimdahl18

Throw-away Prototyping

CSci 5801 - Fall 2013Mats Heimdahl19

Outline
Requirements

Develop
Prototype

Evaluate
Prototype

Specify
System

Validate
System

Develop
Software

Delivered
Software System

Reusable Components

Throw-away Prototyping

 Used to reduce requirements risk

 The prototype is developed from an initial specification,
delivered for experiment then discarded

 The throw-away prototype should NOT be considered as a
final system

 Some system characteristics may have been left out

 There is no specification for long-term maintenance

 The system will be poorly structured and difficult to maintain

CSci 5801 - Fall 2013Mats Heimdahl20

Evolutionary Development (L)

 Problems

 Lack of process visibility

 Systems are often poorly structured

 Special skills (e.g., in languages for rapid prototyping)
may be required

 Applicability

 For small or medium-size interactive systems

 For parts of large systems (e.g. the user interface)

 For short-lifetime systems

CSci 5801 - Fall 2013Mats Heimdahl21

We Have “Learned” (at least seen)

 The waterfall model

 Separate and distinct phases of specification
and development

 Evolutionary development

 Specification and development are interleaved

 Evolutionary and throw away prototyping

CSci 5801 - Fall 2013Mats Heimdahl22

CSci 5801 - Fall 2013Mats Heimdahl23

Next Time

 More process

 Spiral model

 Incremental development

 eXtreme programming (Agile)

