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Today’s Goals

 Introduce and/or Review Software 
Development Processes

 Definitions, Processes, and Process Models

 Examples of Software Process Models
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Why is Software Development so %$##% Hard? (L)

 Complexity

 Software systems are the most complex artifacts ever created

 Changeability

 Software is “easy” to change

 Invisibility

 We cannot see the progress of the development

 Conformity

 The software will have to be molded to fit whatever external 
constraints may imposed
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Code and Fix
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Implementation



We Need a Software Process

 Structured set of activities required to develop a 
software system

 Specification

 Design

 Validation

 Evolution

 Activities vary depending on the organization and the 
type of system being developed

 Must be explicitly modeled if it is to be 
managed

CSci 5801  - Fall 2013Mats Heimdahl5



Code and Fix Model (L)

 Applicability

 Used for small, simple projects

 Potential Problems

 Quality 

 Maintainability
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Generic Software Process Models

 The Waterfall Model

 Separate and distinct phases of specification and development

 Evolutionary Development

 Specification and development are interleaved

 Spiral Model

 Let risk analysis drive your process 

 Incremental Development

 Deliver your system in small planned increments

 Agile and eXtreme Programming
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Process Characteristics

 Understandability

 Is the process defined and 
understandability

 Visibility

 Is the process progress 
externally visible

 Supportability

 Can the process be supported 
by CASE tools

 Acceptability

 Is the process acceptable to 
those involved in it

 Reliability

 Are process errors discovered 
before they result in product errors

 Robustness

 Can the process continue in spite 
of unexpected problems

 Maintainability

 Can the process evolve to meet 
changing organizational needs

 Rapidity

 How fast can the system be 
produced

CSci 5801  - Fall 2013Mats Heimdahl8



Waterfall Model
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Waterfall Model
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Waterfall Model Documents
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Activity Output document

Requirements analysis Feasibility study, outline the requirements

Requirements definition Requirements document

System specification Functional specification, Acceptance test plan, 
Draft User’s manual

Architectural design Architectural specification, system test plan

Interface design Interface specification, Integration test plan

Detailed design Design specification, Unit test plan

Coding Program code

Unit testing Unit test report

Module testing Module test report

Integration testing Integration test report, Final user’s manual

System testing System test report

Acceptance testing Final system and documentation



Waterfall Model (L)

 Problems
 Inflexible model not accommodating change

 You seldom know the requirements that early

 Does not accommodate evaluation of project risk

 Applicability
 Projects where the requirements are very well known

 Low risk projects
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Evolutionary Development
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Prototyping Benefits

 Misunderstandings between software users 
and developers are exposed

 Missing services may be detected

 Confusing services may be identified

 A working system is available early in the 
process

 The prototype may serve as a basis for 
deriving a system specification
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Evolutionary Development

 Evolutionary prototyping 

 Objective is to work with customers and to evolve a final 
system from an initial outline specification. 

 Typically starts with well-understood requirements 

 Throw-away prototyping

 Objective is to understand the system requirements. 

 Typically starts with poorly understood requirements
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Evolutionary Prototyping
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Evolutionary Prototyping

 Must be used for systems where the specification 
cannot be developed in advance

 AI systems and user interface systems

 Based on techniques which allow rapid system 
iterations

 Verification is impossible as there is no specification

 Validation means demonstrating the adequacy of the 
system
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Evolutionary Prototyping Problems

 Existing management processes assume an 
“organized” model of development

 Continual change tends to corrupt system structure 
so long-term maintenance is expensive

 Specialist skills are required which may not be 
available in all development teams

 Organizations must accept that the lifetime of 
systems developed this way will inevitably be short
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Throw-away Prototyping
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Throw-away Prototyping

 Used to reduce requirements risk

 The prototype is developed from an initial specification, 
delivered for experiment then discarded

 The throw-away prototype should NOT be considered as a 
final system

 Some system characteristics may have been left out

 There is no specification for long-term maintenance

 The system will be poorly structured and difficult to maintain
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Evolutionary Development (L)

 Problems

 Lack of process visibility

 Systems are often poorly structured

 Special skills (e.g., in languages for rapid prototyping) 
may be required

 Applicability

 For small or medium-size interactive systems

 For parts of large systems (e.g. the user interface)

 For short-lifetime systems
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We Have “Learned” (at least seen)

 The waterfall model

 Separate and distinct phases of specification 
and development

 Evolutionary development

 Specification and development are interleaved

 Evolutionary and throw away prototyping
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Next Time

 More process

 Spiral model

 Incremental development

 eXtreme programming (Agile)


