
When to Stop Testing
When have we tested enough?

Fall 2013CSci 5801 - Dr. Mats Heimdahl1



Today’s Topics

 How do we know when we are done?

 Stopping Criteria

 Coverage

 Budget

 Plan

 Reliability

 Mutation analysis

Fall 2013CSci 5801 - Dr. Mats Heimdahl2



Fall 2013CSci 5801 - Dr. Mats Heimdahl3

When do we stop?

The all important question

When have we tested enough?



When We Have Achieved Coverage

 Set your sights on some coverage criteria 
and test until that is achieved.

 Problems?

Fall 2013CSci 5801 - Dr. Mats Heimdahl4



The Budget Coverage Criterion

 Industry’s answer to “when is testing 
done”

 When the money is used up

 When the deadline is reached

 Problems?

Fall 2013CSci 5801 - Dr. Mats Heimdahl5



Plan to Test—Test to the Plan

 Plan your tests carefully; then test 
according to plan

 When the tests are done—you are done.

 Problems?

Fall 2013CSci 5801 - Dr. Mats Heimdahl6



Software Reliability 
Categorizing and specifying the reliability of software systems

Courtesy Prof. Mats Heimdahl



What Is Reliability?

 Probability of failure-free operation for a 
specified time in a specified environment for 
a given purpose

 This means quite different things depending 
on the system and the users of that system

 Informally, reliability is a measure of how well 
system users think it provides the services 
they require

Fall 2013CSci 5801 - Dr. Mats Heimdahl8



Reliability Improvement

 Reliability is improved when software faults which 
occur in the most frequently used parts of the 
software are removed

 Removing x% of software faults will not 
necessarily lead to an x% reliability improvement

 In a study, removing 60% of software defects actually 
led to a 3% reliability improvement

 Removing faults with serious consequences is the 
most important objective

Fall 2013CSci 5801 - Dr. Mats Heimdahl9



Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Input causing 
failure

Reliability Perception

User 3User 2

User 1



Software Reliability

 Cannot be defined objectively

 Reliability measurements which are quoted out of context 
are not meaningful

 Requires operational profile for its definition

 The operational profile defines the expected pattern of 
software usage

 Must consider fault consequences

 Not all faults are equally serious

 System is perceived as more unreliable if there are more 
serious faults

Fall 2013CSci 5801 - Dr. Mats Heimdahl11



Reliability and Efficiency

 Reliability is usually more important than efficiency

 No need to use hardware to fullest extent as 
computers are cheap and fast

 Unreliable software is not used

 Hard to improve unreliable systems

 Software failure costs often far exceed system 
costs

 Costs of data loss are very high

Fall 2013CSci 5801 - Dr. Mats Heimdahl12



Reliability Metrics

 Hardware metrics not really suitable for 
software as they are based on component 
failures and the need to repair or replace a 
component once it has failed

 The design is assumed to be correct

 Software failures are always design failures

 Often the system continues to be available in 
spite of the fact that a failure has occurred

Fall 2013CSci 5801 - Dr. Mats Heimdahl13



Reliability Metrics

 Probability of failure on demand

 This is a measure of the likelihood that the system 
will fail when a service request is made

 POFOD = 0.001 means 1 out of 1000 service 
requests result in failure

 Rate of fault occurrence (ROCOF)

 Frequency of occurrence of unexpected behavior

 ROCOF of 0.02 means 2 failures are likely in each 
100 operational time units

Fall 2013CSci 5801 - Dr. Mats Heimdahl14



Reliability Metrics

 Mean time to failure

 Measure of the time between observed failures

 MTTF of 500 means that the time between failures 
is 500 time units

 Availability

 Measure of how likely the system is available for 
use. Takes repair/restart time into account

 Availability of 0.998 means software is available for 
998 out of 1000 time units

Fall 2013CSci 5801 - Dr. Mats Heimdahl15



Fall 2013CSci 5801 - Dr. Mats Heimdahl16

Reliability Examples

 Provide software with 10,000 inputs
 Wrong result on 35, Crash on 5

 What is the POFOD?

 Run the software for 144 hours (6*106 inputs)
 Software failed on 6 input

 What is the ROCOF?

 What is the POFOD?

 You you a piece of software with the advertised ROCOF of 0.001 
failures/hour for “stop failures”
 You know it takes 3 hours (on average) to get the system up again after 

a failure

 What is the availability?



Fall 2013CSci 5801 - Dr. Mats Heimdahl17

Reliability Examples

 Provide software with 10,000 inputs
 Wrong result on 35, Crash on 5

 What is the POFOD?

 Run the software for 144 hours (6*10^6 inputs)
 Software failed on 6 input

 What is the ROCOF?

 What is the POFOD?

 You have a piece of software with the advertised ROCOF of 
0.001 failures/hour for “stop failures”
 You know it takes 3 hours (on average) to get the system up again after 

a failure

 What is the availability

40
10,000

0.004



Fall 2013CSci 5801 - Dr. Mats Heimdahl18

Reliability Examples

 Provide software with 10,000 inputs
 Wrong result on 35, Crash on 5

 What is the POFOD?

 Run the software for 144 hours (6*10^6 inputs)
 Software failed on 6 input

 What is the ROCOF?

 What is the POFOD?

 You have a piece of software with the advertised ROCOF of 
0.001 failures/hour for “stop failures”
 You know it takes 3 hours (on average) to get the system up again after 

a failure

 What is the availability

6
6*10^6

6
144

10^-6

0.04 1
24

40
10,000

0.004



Fall 2013CSci 5801 - Dr. Mats Heimdahl19

Reliability Examples

 Provide software with 10,000 inputs
 Wrong result on 35, Crash on 5

 What is the POFOD?

 Run the software for 144 hours (6*10^6 inputs)
 Software failed on 6 input

 What is the ROCOF?

 What is the POFOD?

 You have a piece of software with the advertised ROCOF of 
0.001 failures/hour for “stop failures”
 You know it takes 3 hours (on average) to get the system up again after 

a failure

 What is the availability 0.997

6
6*10^6

6
144

10^-6

0.04 1
24

40
10,000

0.004



Fall 2013CSci 5801 - Dr. Mats Heimdahl20

Reliability Measurement

 Measure the number of system failures for 
a given number of system inputs

 Used to compute POFOD

 Measure the time (or number of 
transactions) between system failures

 Used to compute ROCOF and MTTF

 Measure the time to restart after failure

 Used to compute AVAIL



Fall 2013CSci 5801 - Dr. Mats Heimdahl21

Reliability Economics

 Because of very high costs of reliability 
achievement, it may be more cost effective to 
accept unreliability and pay for failure costs

 However, this depends on social and political 
factors
 A reputation for unreliable products  may lose 

future business
 Depends on system type

 For business systems in particular, modest 
reliability may be adequate



Fall 2013CSci 5801 - Dr. Mats Heimdahl22

Costs of Increasing Reliability

Low Medium High Very High Ultra High

Cost

Reliability



Statistical Testing

 Testing software for reliability rather than fault detection

 Test data selection should follow the predicted usage 
profile for the software

 Measuring the number of errors allows the reliability of 
the software to be predicted

 An acceptable level of reliability should be 
specified and the software tested and amended until 
that level of reliability is reached

Fall 2013CSci 5801 - Dr. Mats Heimdahl23



Statistical Testing Procedure

 Determine operational profile of the software

 Generate a set of test data corresponding to 
this profile

 Apply tests, measuring amount of execution 
time between each failure

 After a statistically valid number of tests have been 
executed, reliability can be measured

Fall 2013CSci 5801 - Dr. Mats Heimdahl24



Statistical Testing Difficulties

 Uncertainty in the operational profile

 This is a particular problem for new systems with no operational history

 Less of a problem for replacement systems

 High costs of generating the operational profile

 Costs are very dependent on what usage information is collected by the 
organization which requires the profile

 Statistical uncertainty when high reliability is specified

 Difficult to estimate level of confidence in operational profile

 Usage pattern of software may change with time

Fall 2013CSci 5801 - Dr. Mats Heimdahl25



Reliability Growth Modeling

 Growth model is a mathematical model of 
the system reliability change as it is tested 
and faults are removed

 Used as a means of reliability prediction 
by extrapolating from current data

 Depends on the use of statistical testing 
to measure the reliability of a system 
version

Fall 2013CSci 5801 - Dr. Mats Heimdahl26



Fall 2013CSci 5801 - Dr. Mats Heimdahl27

Reliability Prediction

Required 
Failure Rate

Estimated 
completion time

Very Low
(10-9)

= 1,000 Years

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15

Reliability



Key Points

 Reliability is usually the most important dynamic 
software characteristic

 Professionals should aim to produce reliable 
software

 Reliability depends on the pattern of usage of 
the software

 Faulty software can be reliable

 Reliability requirements should be defined 
quantitatively whenever possible

Fall 2013CSci 5801 - Dr. Mats Heimdahl28



Key Points

 There are many different reliability metrics

 The metric chosen should reflect the type of system and 
the application domain

 Statistical testing is used for reliability assessment

 Depends on using a test data set which reflects the use 
of the software

 Reliability growth models may be used to predict 
when a required level of reliability will be achieved

Fall 2013CSci 5801 - Dr. Mats Heimdahl29



Mutation Testing
An approach to figuring out if the test set is any good

Courtesy Prof. Mats Heimdahl



Question

 I have a collection of test cases

 How do I know if the set is any good?

 That is, how likely is it to reveal faults?

Fall 2013CSci 5801 - Dr. Mats Heimdahl31



Mutation Testing

 An approach to investigating the quality of your test 
data

 Create a second version of your software with some 
minor change 

 Introduce a “mutation”

 Run the test cases and see if they reveal the mutation 
(an artificial fault)

 If yes – Good test data

 If no – Bad test data

Fall 2013CSci 5801 - Dr. Mats Heimdahl32



Fall 2013CSci 5801 - Dr. Mats Heimdahl33

General Idea

Original
Software

Test Data

Output

????
Output

Mutant
Software

Mutate



What is a Mutant?

 A mutant is the original program with a small change 
introduced 

 The change is called a mutation

 A mutation is one single “change” on one line in the 
original

 The “change” is caused by a mutation operator

 Also called mutagens, mutagenic operators, etc.

 For the program P, the set of mutants are called the 
neighborhood of P

Fall 2013CSci 5801 - Dr. Mats Heimdahl34



Fall 2013CSci 5801 - Dr. Mats Heimdahl35

How do we Create a Mutant?

 Apply appropriate mutation operators to each 
line in the program

………
………
delta = newGuess - sqrt
………
………

delta = newGuess + sqrt

delta = newGuess * sqrt

delta = newGuess % sqrt

delta = newGuess / sqrt



Fall 2013CSci 5801 - Dr. Mats Heimdahl36

Mutation Operators

 There are many different mutation operators

 Operators

 Off by one

 Switch variable names of same type

if ((x > y) && (p != NULL))

if ((x > y+1) && (p != NULL))

if ((x > y) && (p == NULL))

if ((x <= y) && (p != NULL))

if ((x < y) && (p != NULL))



Fall 2013CSci 5801 - Dr. Mats Heimdahl37

Mutant
Software

Mutant
Software

Mutant
Software

Mutant
Software

Testing Approach

Original
Software

Test Data

Output Output

Mutant
Software

Mutate

Problem!
Kill Mutant!



Mutation Adequacy Score (MS)

 How well did you do?

 What are the problems of this approach?

Fall 2013CSci 5801 - Dr. Mats Heimdahl38

# Dead
# Mutants - # Equivalent

MS =  * 100 % 



Fall 2013CSci 5801 - Dr. Mats Heimdahl39

Test Adequacy Summary

 Code coverage 
criteria

 Hard to achieve 

 Experiments indicate 
they are no better (or 
marginally better) than 
random testing

 Use the test plan

 Statistical

 User profile or input 
distribution

 Mutation testing

How do we know if our tests are any good?



Fall 2013CSci 5801 - Dr. Mats Heimdahl40

Six Essentials of Testing

 The quality of the test process determines 
the success of the test effort

 Prevent defect migration by using early life-
cycle testing techniques

 The time for software testing tools is now

Adapted from Software Testing in the Real World, Edward Kit; Addison-Wesley, 1995



Fall 2013CSci 5801 - Dr. Mats Heimdahl41

Six Essentials of Testing

 A real person must take responsibility for 
improving the testing process

 Testing is a professional discipline 
requiring trained, skilled people

 Cultivate a positive team attitude of 
creative destruction

Adapted from Software Testing in the Real World, Edward Kit; Addison-Wesley, 1995


