
When to Stop Testing
When have we tested enough?

Fall 2013CSci 5801 - Dr. Mats Heimdahl1

Today’s Topics

 How do we know when we are done?

 Stopping Criteria

 Coverage

 Budget

 Plan

 Reliability

 Mutation analysis

Fall 2013CSci 5801 - Dr. Mats Heimdahl2

Fall 2013CSci 5801 - Dr. Mats Heimdahl3

When do we stop?

The all important question

When have we tested enough?

When We Have Achieved Coverage

 Set your sights on some coverage criteria
and test until that is achieved.

 Problems?

Fall 2013CSci 5801 - Dr. Mats Heimdahl4

The Budget Coverage Criterion

 Industry’s answer to “when is testing
done”

 When the money is used up

 When the deadline is reached

 Problems?

Fall 2013CSci 5801 - Dr. Mats Heimdahl5

Plan to Test—Test to the Plan

 Plan your tests carefully; then test
according to plan

 When the tests are done—you are done.

 Problems?

Fall 2013CSci 5801 - Dr. Mats Heimdahl6

Software Reliability
Categorizing and specifying the reliability of software systems

Courtesy Prof. Mats Heimdahl

What Is Reliability?

 Probability of failure-free operation for a
specified time in a specified environment for
a given purpose

 This means quite different things depending
on the system and the users of that system

 Informally, reliability is a measure of how well
system users think it provides the services
they require

Fall 2013CSci 5801 - Dr. Mats Heimdahl8

Reliability Improvement

 Reliability is improved when software faults which
occur in the most frequently used parts of the
software are removed

 Removing x% of software faults will not
necessarily lead to an x% reliability improvement

 In a study, removing 60% of software defects actually
led to a 3% reliability improvement

 Removing faults with serious consequences is the
most important objective

Fall 2013CSci 5801 - Dr. Mats Heimdahl9

Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Input causing
failure

Reliability Perception

User 3User 2

User 1

Software Reliability

 Cannot be defined objectively

 Reliability measurements which are quoted out of context
are not meaningful

 Requires operational profile for its definition

 The operational profile defines the expected pattern of
software usage

 Must consider fault consequences

 Not all faults are equally serious

 System is perceived as more unreliable if there are more
serious faults

Fall 2013CSci 5801 - Dr. Mats Heimdahl11

Reliability and Efficiency

 Reliability is usually more important than efficiency

 No need to use hardware to fullest extent as
computers are cheap and fast

 Unreliable software is not used

 Hard to improve unreliable systems

 Software failure costs often far exceed system
costs

 Costs of data loss are very high

Fall 2013CSci 5801 - Dr. Mats Heimdahl12

Reliability Metrics

 Hardware metrics not really suitable for
software as they are based on component
failures and the need to repair or replace a
component once it has failed

 The design is assumed to be correct

 Software failures are always design failures

 Often the system continues to be available in
spite of the fact that a failure has occurred

Fall 2013CSci 5801 - Dr. Mats Heimdahl13

Reliability Metrics

 Probability of failure on demand

 This is a measure of the likelihood that the system
will fail when a service request is made

 POFOD = 0.001 means 1 out of 1000 service
requests result in failure

 Rate of fault occurrence (ROCOF)

 Frequency of occurrence of unexpected behavior

 ROCOF of 0.02 means 2 failures are likely in each
100 operational time units

Fall 2013CSci 5801 - Dr. Mats Heimdahl14

Reliability Metrics

 Mean time to failure

 Measure of the time between observed failures

 MTTF of 500 means that the time between failures
is 500 time units

 Availability

 Measure of how likely the system is available for
use. Takes repair/restart time into account

 Availability of 0.998 means software is available for
998 out of 1000 time units

Fall 2013CSci 5801 - Dr. Mats Heimdahl15

Fall 2013CSci 5801 - Dr. Mats Heimdahl16

Reliability Examples

 Provide software with 10,000 inputs
 Wrong result on 35, Crash on 5

 What is the POFOD?

 Run the software for 144 hours (6*106 inputs)
 Software failed on 6 input

 What is the ROCOF?

 What is the POFOD?

 You you a piece of software with the advertised ROCOF of 0.001
failures/hour for “stop failures”
 You know it takes 3 hours (on average) to get the system up again after

a failure

 What is the availability?

Fall 2013CSci 5801 - Dr. Mats Heimdahl17

Reliability Examples

 Provide software with 10,000 inputs
 Wrong result on 35, Crash on 5

 What is the POFOD?

 Run the software for 144 hours (6*10^6 inputs)
 Software failed on 6 input

 What is the ROCOF?

 What is the POFOD?

 You have a piece of software with the advertised ROCOF of
0.001 failures/hour for “stop failures”
 You know it takes 3 hours (on average) to get the system up again after

a failure

 What is the availability

40
10,000

0.004

Fall 2013CSci 5801 - Dr. Mats Heimdahl18

Reliability Examples

 Provide software with 10,000 inputs
 Wrong result on 35, Crash on 5

 What is the POFOD?

 Run the software for 144 hours (6*10^6 inputs)
 Software failed on 6 input

 What is the ROCOF?

 What is the POFOD?

 You have a piece of software with the advertised ROCOF of
0.001 failures/hour for “stop failures”
 You know it takes 3 hours (on average) to get the system up again after

a failure

 What is the availability

6
6*10^6

6
144

10^-6

0.04 1
24

40
10,000

0.004

Fall 2013CSci 5801 - Dr. Mats Heimdahl19

Reliability Examples

 Provide software with 10,000 inputs
 Wrong result on 35, Crash on 5

 What is the POFOD?

 Run the software for 144 hours (6*10^6 inputs)
 Software failed on 6 input

 What is the ROCOF?

 What is the POFOD?

 You have a piece of software with the advertised ROCOF of
0.001 failures/hour for “stop failures”
 You know it takes 3 hours (on average) to get the system up again after

a failure

 What is the availability 0.997

6
6*10^6

6
144

10^-6

0.04 1
24

40
10,000

0.004

Fall 2013CSci 5801 - Dr. Mats Heimdahl20

Reliability Measurement

 Measure the number of system failures for
a given number of system inputs

 Used to compute POFOD

 Measure the time (or number of
transactions) between system failures

 Used to compute ROCOF and MTTF

 Measure the time to restart after failure

 Used to compute AVAIL

Fall 2013CSci 5801 - Dr. Mats Heimdahl21

Reliability Economics

 Because of very high costs of reliability
achievement, it may be more cost effective to
accept unreliability and pay for failure costs

 However, this depends on social and political
factors
 A reputation for unreliable products may lose

future business
 Depends on system type

 For business systems in particular, modest
reliability may be adequate

Fall 2013CSci 5801 - Dr. Mats Heimdahl22

Costs of Increasing Reliability

Low Medium High Very High Ultra High

Cost

Reliability

Statistical Testing

 Testing software for reliability rather than fault detection

 Test data selection should follow the predicted usage
profile for the software

 Measuring the number of errors allows the reliability of
the software to be predicted

 An acceptable level of reliability should be
specified and the software tested and amended until
that level of reliability is reached

Fall 2013CSci 5801 - Dr. Mats Heimdahl23

Statistical Testing Procedure

 Determine operational profile of the software

 Generate a set of test data corresponding to
this profile

 Apply tests, measuring amount of execution
time between each failure

 After a statistically valid number of tests have been
executed, reliability can be measured

Fall 2013CSci 5801 - Dr. Mats Heimdahl24

Statistical Testing Difficulties

 Uncertainty in the operational profile

 This is a particular problem for new systems with no operational history

 Less of a problem for replacement systems

 High costs of generating the operational profile

 Costs are very dependent on what usage information is collected by the
organization which requires the profile

 Statistical uncertainty when high reliability is specified

 Difficult to estimate level of confidence in operational profile

 Usage pattern of software may change with time

Fall 2013CSci 5801 - Dr. Mats Heimdahl25

Reliability Growth Modeling

 Growth model is a mathematical model of
the system reliability change as it is tested
and faults are removed

 Used as a means of reliability prediction
by extrapolating from current data

 Depends on the use of statistical testing
to measure the reliability of a system
version

Fall 2013CSci 5801 - Dr. Mats Heimdahl26

Fall 2013CSci 5801 - Dr. Mats Heimdahl27

Reliability Prediction

Required
Failure Rate

Estimated
completion time

Very Low
(10-9)

= 1,000 Years

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15

Reliability

Key Points

 Reliability is usually the most important dynamic
software characteristic

 Professionals should aim to produce reliable
software

 Reliability depends on the pattern of usage of
the software

 Faulty software can be reliable

 Reliability requirements should be defined
quantitatively whenever possible

Fall 2013CSci 5801 - Dr. Mats Heimdahl28

Key Points

 There are many different reliability metrics

 The metric chosen should reflect the type of system and
the application domain

 Statistical testing is used for reliability assessment

 Depends on using a test data set which reflects the use
of the software

 Reliability growth models may be used to predict
when a required level of reliability will be achieved

Fall 2013CSci 5801 - Dr. Mats Heimdahl29

Mutation Testing
An approach to figuring out if the test set is any good

Courtesy Prof. Mats Heimdahl

Question

 I have a collection of test cases

 How do I know if the set is any good?

 That is, how likely is it to reveal faults?

Fall 2013CSci 5801 - Dr. Mats Heimdahl31

Mutation Testing

 An approach to investigating the quality of your test
data

 Create a second version of your software with some
minor change

 Introduce a “mutation”

 Run the test cases and see if they reveal the mutation
(an artificial fault)

 If yes – Good test data

 If no – Bad test data

Fall 2013CSci 5801 - Dr. Mats Heimdahl32

Fall 2013CSci 5801 - Dr. Mats Heimdahl33

General Idea

Original
Software

Test Data

Output

????
Output

Mutant
Software

Mutate

What is a Mutant?

 A mutant is the original program with a small change
introduced

 The change is called a mutation

 A mutation is one single “change” on one line in the
original

 The “change” is caused by a mutation operator

 Also called mutagens, mutagenic operators, etc.

 For the program P, the set of mutants are called the
neighborhood of P

Fall 2013CSci 5801 - Dr. Mats Heimdahl34

Fall 2013CSci 5801 - Dr. Mats Heimdahl35

How do we Create a Mutant?

 Apply appropriate mutation operators to each
line in the program

………
………
delta = newGuess - sqrt
………
………

delta = newGuess + sqrt

delta = newGuess * sqrt

delta = newGuess % sqrt

delta = newGuess / sqrt

Fall 2013CSci 5801 - Dr. Mats Heimdahl36

Mutation Operators

 There are many different mutation operators

 Operators

 Off by one

 Switch variable names of same type

if ((x > y) && (p != NULL))

if ((x > y+1) && (p != NULL))

if ((x > y) && (p == NULL))

if ((x <= y) && (p != NULL))

if ((x < y) && (p != NULL))

Fall 2013CSci 5801 - Dr. Mats Heimdahl37

Mutant
Software

Mutant
Software

Mutant
Software

Mutant
Software

Testing Approach

Original
Software

Test Data

Output Output

Mutant
Software

Mutate

Problem!
Kill Mutant!

Mutation Adequacy Score (MS)

 How well did you do?

 What are the problems of this approach?

Fall 2013CSci 5801 - Dr. Mats Heimdahl38

Dead
Mutants - # Equivalent

MS = * 100 %

Fall 2013CSci 5801 - Dr. Mats Heimdahl39

Test Adequacy Summary

 Code coverage
criteria

 Hard to achieve

 Experiments indicate
they are no better (or
marginally better) than
random testing

 Use the test plan

 Statistical

 User profile or input
distribution

 Mutation testing

How do we know if our tests are any good?

Fall 2013CSci 5801 - Dr. Mats Heimdahl40

Six Essentials of Testing

 The quality of the test process determines
the success of the test effort

 Prevent defect migration by using early life-
cycle testing techniques

 The time for software testing tools is now

Adapted from Software Testing in the Real World, Edward Kit; Addison-Wesley, 1995

Fall 2013CSci 5801 - Dr. Mats Heimdahl41

Six Essentials of Testing

 A real person must take responsibility for
improving the testing process

 Testing is a professional discipline
requiring trained, skilled people

 Cultivate a positive team attitude of
creative destruction

Adapted from Software Testing in the Real World, Edward Kit; Addison-Wesley, 1995

