
Selecting Structural Test

Fall 2013CSci 5801 - Dr. Mats Heimdahl1

Get the Right Incentives

Fall 2013CSci 5801 - Dr. Mats Heimdahl2

Fall 2013CSci 5801 - Dr. Mats Heimdahl3

Objectives

 To understand program flow graphs

 Present some additional white box
selection selection approaches

 To practice white box test case selection

Fall 2013CSci 5801 - Dr. Mats Heimdahl4

Binary Search (C++)

 Replace with portrait slide

Fall 2013CSci 5801 - Dr. Mats Heimdahl5

Control and Data-driven Programs

case A is

 when “One” => i := 1 ;

 when “Two” => i := 2 ;

 when “Three” => i := 3 ;

 when “Four” => i := 4 ;

 when “Five” => i := 5 ;

end case ;

Strings: array (1..5) of STRING
:=

 (“One”, “Two”, “Three”,
“Four”, “Five”);

 i := 1 ;

loop

 exit when Strings (i) = A ;

 i := i + 1 ;

end loop ;

Fall 2013CSci 5801 - Dr. Mats Heimdahl6

How many cases for
Statement
Branch
Path

loop <= 20

Path Testing

Fall 20137CSci 5801 - Dr. Mats Heimdahl

Path Testing

 Path coverage requires:

 3,656,158,440,062,976 test cases

 If you run 1000 tests per second, this will
take 116,000 years.

Fall 2013CSci 5801 - Dr. Mats Heimdahl, Gregory Gay

How About Loops?

 Simple loops

 Skip loop entirely

 Only one pass through the loop

 Two passes through the loop

 m passes where m < n

 (n-1), n, and (n+1) passes

 Where n is the max allowed passes through the loop

Fall 2013CSci 5801 - Dr. Mats Heimdahl9

Nested and Concatenated Loops

 Nested

 Test innermost loop first with all outer loops at the
minimum value

 Move one loop out, keep the inner loop at “typical”
values, and test it as the previous step

 Continue until outermost loop tested

 Concatenated loops

 Independent and can be tested independently

 Most of the time……

Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Interface Testing

 Takes place when modules or sub-systems
are integrated to create larger systems

 Objectives are to detect faults due to
interface errors or invalid assumptions about
interfaces

 Particularly important for object-oriented
development as objects are defined by their
interfaces

Fall 2013CSci 5801 - Dr. Mats Heimdahl11

Fall 2013CSci 5801 - Dr. Mats Heimdahl12

Requirements
Specification

System
Specification

System Design
Detailed
Design

Module and
Unit Code
and Test

System Integration
Test

Acceptance
Test

Service
Sub-system
Integration Test

Acceptance
Tests

System Integration
Tests

Sub-system Integration
Tests

Unit Tests

The V-Model of Development

How do we
execute these?

Fall 2013CSci 5801 - Dr. Mats Heimdahl13

Requirements
Specification

System
Specification

System Design
Detailed
Design

Module and
Unit Code
and Test

System Integration
Test

Acceptance
Test

Service
Sub-system
Integration Test

Acceptance
Tests

System Integration
Tests

Sub-system Integration
Tests

Unit Tests

The V-Model of Development

How do we
execute these?

Fall 2013CSci 5801 - Dr. Mats Heimdahl14

Level 1

Level-2 Stubs

Level 1

Level 2 Level 2 Level 2 Level 2

Level-3 Stubs

Testing Sequence

Top-down testing

Fall 2013CSci 5801 - Dr. Mats Heimdahl15

Level N Level N Level N Level N Level N

Testing
Sequence

Level N-1 Level N-1 Level N-1

Test Drivers

Test Drivers

Bottom-Up Testing

Interfaces Types

 Parameter interfaces

 Data passed from one procedure to another

 Shared memory interfaces

 Block of memory is shared between procedures

 Procedural interfaces

 Sub-system encapsulates a set of procedures to be
called by other sub-systems

 Message passing interfaces

 Sub-systems request services from other sub-systems

Fall 2013CSci 5801 - Dr. Mats Heimdahl16

Fall 2013CSci 5801 - Dr. Mats Heimdahl17

Interface Testing

A B

DC

Test Cases

Interface Errors

 Interface misuse

 A calling component calls another component and makes
an error in its use of its interface

 e.g., parameters in the wrong order

 Interface misunderstanding

 A calling component embeds assumptions about the
behavior of the called component that are incorrect

 Timing errors

 The called and the calling component operate at different
speeds and out-of-date information is accessed

Fall 2013CSci 5801 - Dr. Mats Heimdahl18

Interface Testing Guidelines

 Design tests so that parameters to a called procedure are
at the extreme ends of their ranges

 Always test pointer parameters with null pointers

 Design tests which cause the component to fail

 Use stress testing in message passing systems

 In shared memory systems, vary the order in which
components are activated

Fall 2013CSci 5801 - Dr. Mats Heimdahl19

We Have Learned

 Test Coverage Measures

 Statement, branch, and path coverage

 Condition coverage (basic, compound)

 Data flow coverage

 Test coverage measures ensure that
statements have been executed to some level

 However, it is not possible to exercise all
combinations

Fall 2013CSci 5801 - Dr. Mats Heimdahl20

