
Selecting Structural Test

Fall 2013CSci 5801 - Dr. Mats Heimdahl1

Get the Right Incentives

Fall 2013CSci 5801 - Dr. Mats Heimdahl2

Fall 2013CSci 5801 - Dr. Mats Heimdahl3

Objectives

 To understand program flow graphs

 Present some additional white box
selection selection approaches

 To practice white box test case selection

Fall 2013CSci 5801 - Dr. Mats Heimdahl4

Binary Search (C++)

 Replace with portrait slide

Fall 2013CSci 5801 - Dr. Mats Heimdahl5

Control and Data-driven Programs

case A is

 when “One” => i := 1 ;

 when “Two” => i := 2 ;

 when “Three” => i := 3 ;

 when “Four” => i := 4 ;

 when “Five” => i := 5 ;

end case ;

Strings: array (1..5) of STRING
:=

 (“One”, “Two”, “Three”,
“Four”, “Five”);

 i := 1 ;

loop

 exit when Strings (i) = A ;

 i := i + 1 ;

end loop ;

Fall 2013CSci 5801 - Dr. Mats Heimdahl6

How many cases for
Statement
Branch
Path

loop <= 20

Path Testing

Fall 20137CSci 5801 - Dr. Mats Heimdahl

Path Testing

 Path coverage requires:

 3,656,158,440,062,976 test cases

 If you run 1000 tests per second, this will
take 116,000 years.

Fall 2013CSci 5801 - Dr. Mats Heimdahl, Gregory Gay

How About Loops?

 Simple loops

 Skip loop entirely

 Only one pass through the loop

 Two passes through the loop

 m passes where m < n

 (n-1), n, and (n+1) passes

 Where n is the max allowed passes through the loop

Fall 2013CSci 5801 - Dr. Mats Heimdahl9

Nested and Concatenated Loops

 Nested

 Test innermost loop first with all outer loops at the
minimum value

 Move one loop out, keep the inner loop at “typical”
values, and test it as the previous step

 Continue until outermost loop tested

 Concatenated loops

 Independent and can be tested independently

 Most of the time……

Fall 2013CSci 5801 - Dr. Mats Heimdahl10

Interface Testing

 Takes place when modules or sub-systems
are integrated to create larger systems

 Objectives are to detect faults due to
interface errors or invalid assumptions about
interfaces

 Particularly important for object-oriented
development as objects are defined by their
interfaces

Fall 2013CSci 5801 - Dr. Mats Heimdahl11

Fall 2013CSci 5801 - Dr. Mats Heimdahl12

Requirements
Specification

System
Specification

System Design
Detailed
Design

Module and
Unit Code
and Test

System Integration
Test

Acceptance
Test

Service
Sub-system
Integration Test

Acceptance
Tests

System Integration
Tests

Sub-system Integration
Tests

Unit Tests

The V-Model of Development

How do we
execute these?

Fall 2013CSci 5801 - Dr. Mats Heimdahl13

Requirements
Specification

System
Specification

System Design
Detailed
Design

Module and
Unit Code
and Test

System Integration
Test

Acceptance
Test

Service
Sub-system
Integration Test

Acceptance
Tests

System Integration
Tests

Sub-system Integration
Tests

Unit Tests

The V-Model of Development

How do we
execute these?

Fall 2013CSci 5801 - Dr. Mats Heimdahl14

Level 1

Level-2 Stubs

Level 1

Level 2 Level 2 Level 2 Level 2

Level-3 Stubs

Testing Sequence

Top-down testing

Fall 2013CSci 5801 - Dr. Mats Heimdahl15

Level N Level N Level N Level N Level N

Testing
Sequence

Level N-1 Level N-1 Level N-1

Test Drivers

Test Drivers

Bottom-Up Testing

Interfaces Types

 Parameter interfaces

 Data passed from one procedure to another

 Shared memory interfaces

 Block of memory is shared between procedures

 Procedural interfaces

 Sub-system encapsulates a set of procedures to be
called by other sub-systems

 Message passing interfaces

 Sub-systems request services from other sub-systems

Fall 2013CSci 5801 - Dr. Mats Heimdahl16

Fall 2013CSci 5801 - Dr. Mats Heimdahl17

Interface Testing

A B

DC

Test Cases

Interface Errors

 Interface misuse

 A calling component calls another component and makes
an error in its use of its interface

 e.g., parameters in the wrong order

 Interface misunderstanding

 A calling component embeds assumptions about the
behavior of the called component that are incorrect

 Timing errors

 The called and the calling component operate at different
speeds and out-of-date information is accessed

Fall 2013CSci 5801 - Dr. Mats Heimdahl18

Interface Testing Guidelines

 Design tests so that parameters to a called procedure are
at the extreme ends of their ranges

 Always test pointer parameters with null pointers

 Design tests which cause the component to fail

 Use stress testing in message passing systems

 In shared memory systems, vary the order in which
components are activated

Fall 2013CSci 5801 - Dr. Mats Heimdahl19

We Have Learned

 Test Coverage Measures

 Statement, branch, and path coverage

 Condition coverage (basic, compound)

 Data flow coverage

 Test coverage measures ensure that
statements have been executed to some level

 However, it is not possible to exercise all
combinations

Fall 2013CSci 5801 - Dr. Mats Heimdahl20

