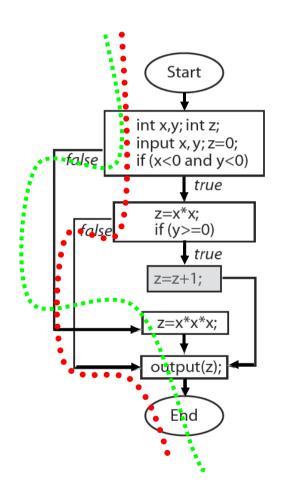

Statement Coverage

Statement Coverage: Computation


- The statement coverage of a test set *T* with respect to (P, R) is computed as $S_c/(S_e-S_i)$, where
 - S_c is the number of statements covered,
 - $-S_{i}$ is the number of *infeasible (unreachable) statements*, and
 - $-S_e$ is the *total number of executable statements* in the program to be tested.
- *T* is considered adequate with respect to the statement coverage criterion if the statement coverage of *T* with respect to (P, R) is 1 (i.e., 100%).

Statement Coverage: An Example

End

Statement Coverage: An Example (cont'd)

- $S_e = \{4, 5, 6, 7, 8, 9, 12, 13\}$ Let $T_1 = \{t_1: <x = -1, y = -1 >, t_2: <x = 1, y = 1 >\}$
- Statements covered:
 - $-t_1$: follow the red line
 - $-t_2$: follow the green line
- $S_c=7$, $S_i=1$, $S_e=8$. The statement coverage for T_1 is 7/(8-1)=1
- Note that 9 is infeasible
- Thus, we conclude that T_1 is adequate with respect to the statement coverage criterion.

Decision Coverage

Decision versus Simple Condition

- A decision can be composed of *a simple condition* such as *x*<0, or of *a more complex condition*, such as (*x*<0 AND *y*<0).
- A simple condition is considered covered if it evaluates to *true* and *false* in one or more executions of the program in which it occurs.
- A *compound condition* is considered covered if each *simple condition* it is comprised of is also covered.

1 if
$$(x < 0 \text{ and } y < 0)$$
 {
2 $z=foo(x,y)$;
3 $z=foo(x,y)$;
1 if $(x<0)$
2 if $(y<0)$
3 $z=foo(x,y)$;

one decision & two simple conditions

two decisions & two simple conditions

How to Cover a Decision?

- A decision is considered covered if the flow of control has been diverted to all possible destinations that correspond to this decision, i.e., *all outcomes of the decision have been taken.*
- This implies that, for example, the expression in the *if* or a *while* statement has evaluated to *true* in some execution of the program under test and to *false* in the same or another execution.

```
– Examples
```

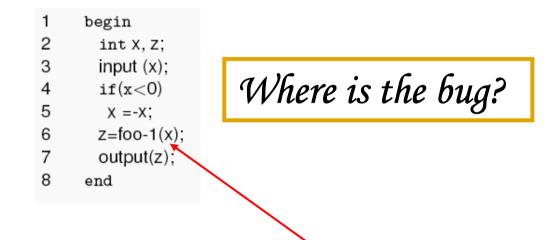
if (x < 0) {.....}
if ((x<0) and (y>0) {.....}
while (x < 3) {.....}

Decision Coverage: Computation

- The decision coverage of a test set *T* with respect to (P, R) is computed as $D_c/(D_e-D_i)$, where
 - D_c is the number of decisions covered,
 - $-D_i$ is the number of *infeasible decisions*, and
 - $-D_e$ is the *total number of decisions* in the program to be tested.
- *T* is considered adequate with respect to the decision coverage criterion if the decision coverage of *T* with respect to (P, R) is 1 (i.e., 100%).

Quiz

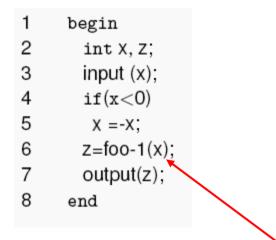
• Consider the following program and a test set


1	begin		
2	int X, Y, Z;		
3	input (x, y);		
4	if(x<0 or y<0)	$T^{\cdot} = \left\{ egin{array}{cc} t_1: & < x = \ t_2: & < x = \end{array} ight.$	-3 y = -2 >
5	z=foo-1(x,y);	$t_{2} : < x = 1$	$4 y = -2 > \int$
6	else	ς -	- /
7	z=foo-2(x,y);		
8	output(z);		
9	end		

• Is *T* adequate with respect to decision coverage?

Statement Coverage versus Decision Coverage

A Program with a Bug


- This following program inputs an integer *x*
 - if x < 0, transforms it into a positive value before invoking foo-1 to compute the output z
 - − if $x \ge 0$, compute z using foo-2

There should have been an else clause for $x \ge 0$ before this statement.

Is Statement Coverage Sufficient?

- Consider a test set $T = \{t_1 : <x = -5 >\}$.
- It is adequate with respect to *statement* coverage criterion, but does not reveal the bug.

There should have been an *else* clause for $x \ge 0$ before this statement.

Is Decision Coverage Sufficient?

- Consider another test set $T' = \{t_1 : <x = -5 > t_2 : <x = 3 > \}$
- *T'* is decision adequate, but not *T*.
- Also, *T*′ reveals the bug, but not *T*.

1	begin
2	int X, Z;
3	input (x);
4	if(x < 0)
5	X =-X;
6	z = foo - 1(x);
7	output(z);
8	end

There should have been an *else* clause for $x \ge 0$ before this statement.

• This example illustrates *how and why decision coverage might help in revealing a bug that is not revealed* by a test set adequate with respect to *statement coverage*.