
Structural Testing

Using the code to measure test adequacy
(and derive test cases)

Objectives

 To describe a second approach to testing
which is geared to find program defects

 To explain the use of program structure
analysis in testing

 Statement Coverage

 Branch coverage

 Path coverage

 Discuss the concept of program complexity

Fall 2012CSci 5801 - Dr. Mats Heimdahl2

Structural Testing

 Sometime called white-box testing

 Derivation of test cases according to program
structure

 Knowledge of the program is used to identify test
cases

 Objective is to exercise a certain percentage
of statements, branches, or condition (not all
path combinations)

 Why??

Fall 2012CSci 5801 - Dr. Mats Heimdahl3

White-box Testing

Fall 2012CSci 5801 - Dr. Mats Heimdahl4

Test Data

Test Output
Component
Code

DerivesTests

Program Flow Graphs

 Describes the program control flow

 Used as a basis for test data selection

 Used as a basis for computing the
cyclomatic complexity

 Complexity = Number of edges - Number of
nodes +1

 Number of decision points + 1

 N way branch counts as N-1 decision points

Fall 2012CSci 5801 - Dr. Mats Heimdahl5

Fall 2012CSci 5801 - Dr. Mats Heimdahl6

1 if (1==x) {
2 y=45;
3 }
4 else {
5 y=23456;
6 }
7 /* continue */

1

2 5

7

If-then-else

Fall 2012CSci 5801 - Dr. Mats Heimdahl7

1

3

4

1 while (1<x) {
2 x--;
3 }
4 /* continue */

Loop

Case

Fall 2012CSci 5801 - Dr. Mats Heimdahl8

1 switch (test) {
2 case 1 : ...
3 case 2 : ...
4 case 3 : ...
5 }
6 /* continue */

1

2 4

5

3

Structural Coverage Testing

 (In)adequacy criteria

 If significant parts of program structure are not tested, testing is
surely inadequate

 Control flow coverage criteria

 Statement (node, basic block) coverage

 Branch (edge) coverage

 Condition coverage

 Path coverage

 Data flow (syntactic dependency) coverage

 Attempted compromise between the impossible and the
inadequate

Fall 2012CSci 5801 - Dr. Mats Heimdahl9

Statement Coverage

Fall 2012CSci 5801 - Dr. Mats Heimdahl10

One test datum (N=1, A[0]=-7, X=9) is enough to guarantee statement
coverage of function select
Faults in handling positive values of A[i] would not be revealed

int select(int A[], int N, int X)
{
int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}

i++

i<N and A[i] <X

A[i]<0

A[i] = - A[i];

return(1)

True

False

True

False

i=0

Branch Coverage

Fall 2012CSci 5801 - Dr. Mats Heimdahl11

i=0

i<N and A[i] <X

A[i]<0

A[i] = - A[i];

return(1)

True

False

True

False

We must add a test datum (N=1, A[0]=7, X=9) to cover branch False of
the if statement. Faults in handling positive values of A[i] would be
revealed. Faults in exiting the loop with condition A[i] <X would not be
revealed

int select(int A[], int N, int X)
{
int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}

i++

Condition Coverage

Fall 2012CSci 5801 - Dr. Mats Heimdahl12

i=0

i<N and A[i] <X

A[i]<0

A[i] = - A[i];

return(1)

True

False

True

False

Both conditions (i<N), (A[i]<X) must be false and true for different tests.
In this case, we must add tests that cause the while loop to exit for a
value greater than X. Faults that arise after several iterations of the loop
would not be revealed.

int select(int A[], int N, int X)
{
int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}

i++

Basic Condition Coverage

 Make each condition both True and False

Fall 2012CSci 5801 - Dr. Mats Heimdahl13

Test Case Cond 1 Cond 2
1 True False

2 False True

Compound Condition Coverage

 Evaluate every combination of the
conditions

Fall 2012CSci 5801 - Dr. Mats Heimdahl14

Test Case Cond 1 Cond 2

1 True True

2 True False

3 False True

4 False False

Compound Coverage (cont.)

 May lead to a lot of test cases

Fall 2012CSci 5801 - Dr. Mats Heimdahl15

Test Case Cond 1 Cond 2 Cond 3 Cond 4

1 True False False False

2 True True False False

3 True True True False

4 True True True True

5 False True False False

6 False True True False

7 False True True True

8 False False True False

9 False False True True

10 False False False True

11 True False True False

12 True False True True

13 True False False True

14 False True True False

15 False True False False

16 False False True False

Path Coverage

i=0

i<N and A[i] <X

A[i]<0

return(1)

True

False

True

False

The loop must be iterated given number of times.
PROBLEM: uncontrolled growth of test sets. We need to select a
significant subset of test cases.

int select(int A[], int N, int X)
{
int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}

i++;

A[i] = - A[i];

Fall 201216CSci 5801 - Dr. Mats Heimdahl

How many cases for
Statement
Branch
Path

loop <= 20

Path Testing

Fall 201217CSci 5801 - Dr. Mats Heimdahl

Data Flow Coverage

DEF={i}

USE={i,N,A,X}

USE={A,i}

USE={i}
DEF={i}

True

False
True

False

Exercise Def-Use paths: selects paths based on effects on the
variables, rather than number of iteration of loops

int select(int A[], int N, int X)
{
int i=0;
while (i<N and A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

i++;
}
return(1);

}

USE={A,i}
DEF{A}

Fall 201218CSci 5801 - Dr. Mats Heimdahl

The Budget Coverage Criterion

 Industry’s answer to “when is testing done”

 When the money is used up

 When the deadline is reached

 This is sometimes a rational approach!

 Implication 1:

 Adequacy criteria answer the wrong question. Selection is more
important.

 Implication 2:

 Practical comparison of approaches must consider the cost of test
case selection

Fall 2012CSci 5801 - Dr. Mats Heimdahl19

Challenges in Structural Coverage

 Interprocedural and gross-level coverage

 E.g., interprocedural data flow, call-graph coverage

 Regression testing

 Late binding (OO programming languages)

 Coverage of actual and apparent polymorphism

 Fundamental challenge: infeasible behaviors

 Underlies problems in inter-procedural and polymorphic
coverage, as well as obstacles to adoption of more
sophisticated coverage criteria and dependence analysis

Fall 2012CSci 5801 - Dr. Mats Heimdahl20

The Infeasibility Problem

 Syntactically indicated behaviors (paths, data flows,
etc.) are often impossible

 Infeasible control flow, data flow, and data states

 Adequacy criteria are typically impossible to satisfy

 Unsatisfactory approaches:

 Manual justification for omitting each impossible test case
(esp. for more demanding criteria)

 Adequacy “scores” based on coverage

 example: 95% statement coverage, 80% def-use coverage

Fall 2012CSci 5801 - Dr. Mats Heimdahl21

We Have Learned

 Test Coverage Measures

 Statement, branch, and path coverage

 Condition coverage (basic, compound)

 Data flow coverage

 Test coverage measures ensure that
statements have been executed to some level

 However, it is not possible to exercise all
combinations

Fall 2012CSci 5801 - Dr. Mats Heimdahl22

