Using the code to measure test adequacy
(and derive test cases) e o A




® To describe a second approach to testing
which is geared to find program defects

¥ To explain the use of program structure
analysis in testing

Statement Coverage
Branch coverage

Path coverage

" Discuss the concept of program complexity



" Sometime called white-box testing

® Derivation of test cases according to program
structure

Knowledge of the program is used to identify test
cases

® Objective is to exercise a certain percentage
of statements, branches, or condition (not all
path combinations)

Why??



Tests Derives

Component
Code




® Describes the program control flow

¥ Used as a basis for test data selection

¥ Used as a basis for computing the
cyclomatic complexity

B Complexity = Number of edges - Number of
nodes +1

Number of decision points + 1

N way branch counts as N-1 decision points



NOoOO A, WDNR

if (1==x) {
y=45;

}

else {
y=23456,
}

/* continue

*/




1 while (1<x) {
2 X--;

3}
4 /* continue */ .



2 case 1
3 case 2
4 case 3

5 }

6 /* contilnue

1 switch (test) {

*/




" (In)adequacy criteria

If significant parts of program structure are not tested, testing is
surely inadequate

" Control flow coverage criteria
Statement (node, basic block) coverage
Branch (edge) coverage
Condition coverage
Path coverage

Data flow (syntactic dependency) coverage

= Attempted compromise between the impossible and the
Inadequate



int select(int A[], int N,
{
int i=0;
while (i<N and A[i] <X)
{
if (A[1]<0)
A[i] = - A[i];
1++;
}
return(1);

}

int X) i=0

True

\4 A[i] =- A[I]s

return(l) l

v

i++

One test datum (N=1, A[0]=-7, X=9) is enough to guarantee statement

coverage of function select
Faults in handling positive values of A[i] would not be revealed




int select(int A[], int N,
{
int i=0;
while (i<N and A[i] <X)
{
if (A[1]<0)
A[1] = - A[1i];
1++;
}

return(1);

int X)

False

A 4

}

return(1)

i<N and A[i] <X

False

True

Ali] = - Ali];

!

> i++

revealed

We must add a test datum (N=1, A[0]=7, X=9) to cover branch False of
the if statement. Faults in handling positive values of A[i] would be
revealed. Faults in exiting the loop with condition A[i] <X would not be




int select(int A[], int N, int X)
{

int i=0;
while (i<N and A[i] <X)
{
if (A[1]<0)
A[1] = - A[1i];
1++;

}

return(1);

}

False

v

return(1)

i<N and A[i] <X

A

True

Ali]<0 True
False

Ali] = - AL];

!

[
»

i++

Both conditions (i<N), (A[i]J<X) must be false and true for different tests.
In this case, we must add tests that cause the while loop to exit for a
value greater than X. Faults that arise after several iterations of the loop

would not be revealed.




® Make each condition both True and False

Test Case Cond 1 Cond 2
1 True False

2 False True



= Evaluate every combination of the
conditions

Test Case Cond 1 Cond 2

1 True True
2 True False
3 False True
4 False False



= May lead to a lot of test cases

Test Case
1

© oo N o U A W N

e e e e T
D U1 A W N O~ O

Cond 1
True
True
True
True
False
False
False
False
False
False
True
True
True
False
False

False

Cond 2
False
True
True
True
True
True
True
False
False
False
False
False
False
True
True

False

Cond 3
False
False
True
True
False
True
True
True
True
False
True
True
False
True
False

True

Cond 4
False
False
False
True
False
False
True
False
True
True
False
True
True
False
False

False



int select(int A[], int N, int X)

{
int i=0;
while (i<N and A[i] <X)
{
if (A[1]<0)
A[1] = - A[1i];
1++;

}

return(1);

True

}

v Ali] = - A[il;

return(1)

\ 4

v

The loop must be iterated given number of times.

PROBLEM: uncontrolled growth of test sets. We need to select a
significant subset of test cases.




How many cases for
Statement
Branch
Path

y+———




DEF={i}

int select(int A[], int N, int X) 1
{
int i=0;
USE={i,N,A,X}

\,{vhile (i<N and A[i] <X) True
if (Al False ]
1++; False _
} & USE={A,i}
return(1); DEFA}
} !
USE={i}
> | DEF={i}

Exercise Def-Use paths: selects paths based on effects on the
variables, rather than number of iteration of loops




" Industry’s answer to “when Is testing done”

When the money is used up

When the deadline is reached

® This Is sometimes a rational approach!
Implication 1:

Adequacy criteria answer the wrong guestion. Selection is more
Important.

Implication 2:

Practical comparison of approaches must consider the cost of test
case selection



" Interprocedural and gross-level coverage

E.g., interprocedural data flow, call-graph coverage
" Regression testing
¥ |ate binding (OO programming languages)
Coverage of actual and apparent polymorphism

® Fundamental challenge: infeasible behaviors

Underlies problems in inter-procedural and polymorphic
coverage, as well as obstacles to adoption of more
sophisticated coverage criteria and dependence analysis



® Syntactically indicated behaviors (paths, data flows,
etc.) are often impossible

Infeasible control flow, data flow, and data states
® Adequacy criteria are typically impossible to satisfy

® Unsatisfactory approaches:

Manual justification for omitting each impossible test case
(esp. for more demanding criteria)

Adequacy “scores” based on coverage

example: 95% statement coverage, 80% def-use coverage



" Test Coverage Measures
Statement, branch, and path coverage
Condition coverage (basic, compound)

Data flow coverage

¥ Test coverage measures ensure that
statements have been executed to some level

However, it Is not possible to exercise all
combinations



