
Construction:
High quality code for ‘programming in the large’

Ajitha Rajan

School of Informatics
University of Edinburgh

Announcements

I Homework 2 will be marked and returned by October 31st.

I Homework 3 handed out on Thursday. Due November 18th.
I Lab next week -

1. Revise Inf1-OP first labs, and remind yourself how to use
Eclipse to start a project, to import code, and to run JUnit
tests.

2. Start your CCS implementation,
3. Install the EclEmma coverage tool and try it with Java

programs and JUnits test from Inf1-OP lab. See
http://www.inf.ed.ac.uk/teaching/courses/inf1/op/

LabsHTML/target/lab2.html

http://www.inf.ed.ac.uk/teaching/courses/inf1/op/LabsHTML/target/lab2.html
http://www.inf.ed.ac.uk/teaching/courses/inf1/op/LabsHTML/target/lab2.html

What is high quality code?

High quality code does what it is supposed to do...

... and will not have to be thrown away when that changes.

Obviously intimately connected with requirement engineering and
design: but today let’s concentrate on the code itself.

What has this to do with programming in the large?

Why is the quality of code more important on a large project than
on a small one?

Fundamentally because other people will have to read and modify
your code – even you in a year’s time count as “other people”!
E.g.,

I because of staff movement

I for code reviews

I for debugging following testing

I for maintenance

(Exercise. Dig out your early Java exercises from Inf1. Criticise
your code. Rewrite it better without changing functionality.)

What has this to do with programming in the large?

Why is the quality of code more important on a large project than
on a small one?

Fundamentally because other people will have to read and modify
your code – even you in a year’s time count as “other people”!
E.g.,

I because of staff movement

I for code reviews

I for debugging following testing

I for maintenance

(Exercise. Dig out your early Java exercises from Inf1. Criticise
your code. Rewrite it better without changing functionality.)

I think there may be a bug in Joes Code - Please Fix

func GreenEggsNHam(Not SamIAm, Green EggsNHam)

foreach Green TryThem in SamIAm

do EatThem(TryThem) = false

NotInACarNotOnABus(EggsNHam)

func NotInACarNotOnABus(Green EggsNHam)

EatThem(EggsNHam) = true

NotOnAPlane(EggsNHam)

foreach NotLikeThem SamIAm of EggsNHam do

if not EatThem(SamIAm) then

NotInACarNotOnABus(SamIAm)

IDoNotLikeThem(EggsNHam)

How to write good code

I Follow your organisation’s coding standards - placement of
curly brackets, indenting, variable and method naming...

Coding standard example

I Suppose you are used to...

public Double getVolumeAsMicrolitres() {

if (m_volumeType.equals(VolumeType.Millilitres))

return m_volume * 1000;

return m_volume;

}

I ... and you see

public Double getVolumeAsMicrolitres()

{

if(m_volumeType.equals(VolumeType.Millilitres))

{

return m_volume*1000;

}

return m_volume;

}

I Even worse: mixed styles in one file - inevitable without
standards!

Coding standard example

I Suppose you are used to...

public Double getVolumeAsMicrolitres() {

if (m_volumeType.equals(VolumeType.Millilitres))

return m_volume * 1000;

return m_volume;

}

I ... and you see

public Double getVolumeAsMicrolitres()

{

if(m_volumeType.equals(VolumeType.Millilitres))

{

return m_volume*1000;

}

return m_volume;

}

I Even worse: mixed styles in one file - inevitable without
standards!

Coding standard example

I Suppose you are used to...

public Double getVolumeAsMicrolitres() {

if (m_volumeType.equals(VolumeType.Millilitres))

return m_volume * 1000;

return m_volume;

}

I ... and you see

public Double getVolumeAsMicrolitres()

{

if(m_volumeType.equals(VolumeType.Millilitres))

{

return m_volume*1000;

}

return m_volume;

}

I Even worse: mixed styles in one file - inevitable without
standards!

How to write good code

I Follow your organisation’s coding standards - placement of
curly brackets, indenting, variable and method naming...

I Use meaningful names (for variables, methods, classes...) If
they become out of date, change them.

I Avoid cryptic comments. Try to make your code so clear that
it doesn’t need comments.

I Balance structural complexity against code duplication: don’t
write the same two lines 5 times (why not?) when an easy
refactoring would let you write them once, but equally, don’t
tie the code in knots to avoid writing something twice.

I Be clever, but not too clever (recursion!). Remember the next
person to modify the code may be less clever than you! Don’t
use deprecated, obscure or unstable language features unless
absolutely necessary.

I Remove dead code, unneeded package includes, etc.

Which of these fragments is better?

1. for(double counterY = -8; y < 8; counterY+=0.5){

x = counterX;

y = counterY;

r = 0.33 - Math.sqrt(x*x + y*y)/33;

r += sinAnim/8;

g.fillCircle(x, y, r);

}

2. for(double counterY = -8; y < 8; counterY+=0.5){

x = counterX;

y = counterY;

r = 0.33 - Math.sqrt(x*x + y*y)/33;

r += sinAnim/8;

g.fillCircle(x, y, r);

}

3. They are both fine.

Be consistent about indentation.

Which of these fragments is better?

1. for(double counterY = -8; y < 8; counterY+=0.5){

x = counterX;

y = counterY;

r = 0.33 - Math.sqrt(x*x + y*y)/33;

r += sinAnim/8;

g.fillCircle(x, y, r);

}

2. for(double counterY = -8; y < 8; counterY+=0.5){

x = counterX;

y = counterY;

r = 0.33 - Math.sqrt(x*x + y*y)/33;

r += sinAnim/8;

g.fillCircle(x, y, r);

}

3. They are both fine.

Be consistent about indentation.

Which of these fragments is better?

1. c.add(o);

2. customer.add(order);

3. They are both fine.

Use meaningful names.

Which of these fragments is better?

1. c.add(o);

2. customer.add(order);

3. They are both fine.

Use meaningful names.

What else is wrong with this?

r = 0.33 - Math.sqrt(x*x + y*y)/33;

r += sinAnim/8;

g.fillCircle(x, y, r);

Use white space consistently

What else is wrong with this?

r = 0.33 - Math.sqrt(x*x + y*y)/33;

r += sinAnim/8;

g.fillCircle(x, y, r);

Use white space consistently

Use comments when they’re useful

if (moveShapeMap!=null) {

// Need to find the current position. All shapes have

// the same source position.

Position pos = ((Move)moveShapeSet.toArray()[0]).getSource();

Hashtable legalMovesToShape = (Hashtable)moveShapeMap.get(pos);

return (Move)legalMovesToShape.get(moveShapeSet);

}

and not when they’re not

// if the move shape map is null

if (moveShapeMap!=null) {

Too many comments is actually a more common serious problem
than too few.

Good code in a modern high-level language shouldn’t need many
explanatory comments, and they can cause problems.

“If the code and the comments disagree, both are probably wrong”
(Anon)

But there’s another use for comments...

and not when they’re not

// if the move shape map is null

if (moveShapeMap!=null) {

Too many comments is actually a more common serious problem
than too few.

Good code in a modern high-level language shouldn’t need many
explanatory comments, and they can cause problems.

“If the code and the comments disagree, both are probably wrong”
(Anon)

But there’s another use for comments...

Javadoc

Any software project requires documenting the code – by which we
mean specifying it, not explaining it.

Documentation held separately from code tends not to get
updated.

So use comments as the mechanism for documentation – even if
the reader won’t need to look at the code itself.

Javadoc is a tool from Sun. Programmer writes doc comments in
particular form, and Javadoc produces pretty-printed hyperlinked
documentation. E.g. Java API documentation at java.sun.com.

See web page for Required reading tutorial.

java.sun.com

Javadoc example (from Sun)
In this example, the block tags are @param, @return, and @see.

/**

* Returns an Image object that can then be painted on the screen.

* The url argument must specify an absolute {@link URL}. The name

* argument is a specifier that is relative to the url argument.

* <p>

* This method always returns immediately, whether or not the

* image exists. When this applet attempts to draw the image on

* the screen, the data will be loaded. The graphics primitives

* that draw the image will incrementally paint on the screen.

*

* @param url an absolute URL giving the base location of the image

* @param name the location of the image, relative to the url argument

* @return the image at the specified URL

* @see Image

*/

public Image getImage(URL url, String name) {

try {

return getImage(new URL(url, name));

} catch (MalformedURLException e) {

return null;

}

}

Javadoc tips (from Sun)
I A doc comment is written in HTML and must precede a class,

field, constructor or method declaration.
I It is made up of two parts – a description followed by block

tags.
I Each line above is indented to align with the code below the

comment.
I The first line contains the begin-comment delimiter (/**).
I If you have more than one paragraph in the doc comment,

separate the paragraphs with a < p > paragraph tag, as
shown.

I Insert a blank comment line between the description and the
list of tags, as shown.

I The first line that begins with an ”@” character ends the
description. There is only one description block per doc
comment; you cannot continue the description following block
tags.

I The last line contains the end-comment delimiter (*/)

Rendered Javadoc (Eclipse)

Example Java program with and without comments

Google Coding Standard for Java

http://google-styleguide.googlecode.com/svn/trunk/

javaguide.html

http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html

The relevance of object orientation

Construction is intimately connected to design: it is design
considerations that motivate using an OO language.

Key need: control complexity and abstract away from detail. This
is essential for systems which are large (in any sense).

Objects; classes; inheritance; packages all allow us to think about a
lot of data at once, without caring about details.

Interfaces help us to focus on behaviour.

Revise classes, interfaces and inheritance in Java.

A common pattern in Java

interface Foo {

...

}

class FooImpl implements Foo {

...

}

Exercise: why is this so much used?

Packages

Recall that Java has packages. Why, and how do you decide what
to put in which package?

Packages:

I are units of encapsulation. By default, attributes and methods
are visible to code in the same package.

I give a way to organize the namespace.

I allow related pieces of code to be grouped together.

So they are most useful when several people must work on the
same product.

But

I the package “hierarchy” is not really a hierarchy as far as
access restrictions are concerned – the relationship between a
package and its sub/superpackages is just like any other
package-package relationship.

Packages extended example

A class eduni.inf.jcb.MahJong inherits from a class
eduni.inf.CardGame. It inherits a protected method deal().
Somewhere in the MahJong class occurs the following code:

eduni.inf.CardGame c = new eduni.inf.CardGame();

c.deal();

Will this compile?

Concretely:

In file ... eduni/inf/CardGame.java:

package eduni.inf;

public class CardGame {

protected void deal() {}

}

In file eduni/inf/jcb/MahJong.java:

package eduni.inf.jcb;

public class MahJong extends eduni.inf.CardGame {

public void foo() {

eduni.inf.CardGame c = new eduni.inf.CardGame();

c.deal();

}

}

Does this compile?

A Yes, and it would even if we removed protected.

B Yes, but it wouldn’t if we removed protected.

C No, deal() needs to be public because CardGame and
MahJong are in different packages.

D No, and wouldn’t unless we made some other change.

C: does not compile

Weirdly enough - to get access by virtue of being a subclass (as
opposed to, by virtue of being in the same package) the reference
through which the protected method is accessed has to be of the
same class, or a subclass, as the class where the reference is made.

Does this compile?

A Yes, and it would even if we removed protected.

B Yes, but it wouldn’t if we removed protected.

C No, deal() needs to be public because CardGame and
MahJong are in different packages.

D No, and wouldn’t unless we made some other change.

C: does not compile

Weirdly enough - to get access by virtue of being a subclass (as
opposed to, by virtue of being in the same package) the reference
through which the protected method is accessed has to be of the
same class, or a subclass, as the class where the reference is made.

And this?

In file ... eduni/inf/CardGame.java:

package eduni.inf;

public class CardGame {

protected void deal() {}

}

In file eduni/inf/jcb/MahJong.java:

package eduni.inf.jcb;

public class MahJong extends eduni.inf.CardGame {

public void foo() {

this.deal();

}

}

Compiles

And this?

In file ... eduni/inf/CardGame.java:

package eduni.inf;

public class CardGame {

protected void deal() {}

}

In file eduni/inf/jcb/MahJong.java:

package eduni.inf.jcb;

public class MahJong extends eduni.inf.CardGame {

public void foo() {

this.deal();

}

}

Compiles

And this?
In file ... eduni/inf/CardGame.java:

package eduni.inf;

public class CardGame {

protected void deal() {}

}

In file eduni/inf/jcb/MahJong.java:

package eduni.inf.jcb;

public class MahJong extends eduni.inf.CardGame {

public void foo() {

MahJong c = new MahJong();

c.deal();

}

}

Compiles

And this?
In file ... eduni/inf/CardGame.java:

package eduni.inf;

public class CardGame {

protected void deal() {}

}

In file eduni/inf/jcb/MahJong.java:

package eduni.inf.jcb;

public class MahJong extends eduni.inf.CardGame {

public void foo() {

MahJong c = new MahJong();

c.deal();

}

}

Compiles

And this?

In file CardGame.java:

public class CardGame {

protected void deal() {}

}

In file MahJong.java:

public class MahJong extends CardGame {

public void foo() {

CardGame c = new CardGame();

c.deal();

}

}

Compiles

And this?

In file CardGame.java:

public class CardGame {

protected void deal() {}

}

In file MahJong.java:

public class MahJong extends CardGame {

public void foo() {

CardGame c = new CardGame();

c.deal();

}

}

Compiles

Reading

Required: something that makes you confident you completely
understand Java packages (e.g., see course web page).

Required: the JavaDoc tutorial

