
Construction:
Configuration, build

Ajitha Rajan

School of Informatics
University of Edinburgh



Have you ever..
I Made a change to code, realised it was a mistake and wanted

to revert back?
I Lost code or had a backup that was too old?
I Had to maintain multiple versions of a product?
I Wanted to see the difference between two (or more) versions

of your code?
I Wanted to prove that a particular change broke or fixed a

piece of code?
I Wanted to review the history of some code?
I Wanted to submit a change to someone else’s code?
I Wanted to share your code, or let other people work on your

code?
I Wanted to see how much work is being done, and where,

when and by whom?
I Wanted to experiment with a new feature without interfering

with working code?

A version control system will make your life easier.



Have you ever..
I Made a change to code, realised it was a mistake and wanted

to revert back?
I Lost code or had a backup that was too old?
I Had to maintain multiple versions of a product?
I Wanted to see the difference between two (or more) versions

of your code?
I Wanted to prove that a particular change broke or fixed a

piece of code?
I Wanted to review the history of some code?
I Wanted to submit a change to someone else’s code?
I Wanted to share your code, or let other people work on your

code?
I Wanted to see how much work is being done, and where,

when and by whom?
I Wanted to experiment with a new feature without interfering

with working code?

A version control system will make your life easier.



Really useful things

Configuration management means managing all the source code,
object code, compiled code. . . keeping track of changes, allowing
developers to cooperate, automatic building, etc. etc. Version
control is a fundamental part of this task. We’ll also talk about
build tools.

Testing of various kinds is an essential ingredient of software
engineering. Test your components (unit testing); test that they
work together (system testing); when you change something, check
that everything still works (regression testing), . . .

Debugging sometimes has to be done . . . how?

Naturally Eclipse provides support for all of these.



Software configuration management

1. Version control tools are important even to individual
programmers (you should be using VC on all your homeworks,
written or coded!)

2. Configuration management tools have additional features to
support teams

3. There’s more to software configuration management than
picking a tool. . .



Version control



Version control

is the core of configuration management.

I keep copies of every version (every edit?) of files

I provide change logs

I somehow manage situation where several people want to edit
the same file

I provide diffs/deltas between versions

I etc.



Local history in Eclipse

Eclipse has built in to its core a very simple version control system.
Eclipse keeps local history for each file: copy of file every time it is
saved. Can compare or restore versions.

For details and how to use, see Eclipse help page,
Workbench User Guide : Concepts : Workbench : Local history



Avoiding Race Conditions



RCS

RCS is an old, primitive VC system, much used on Unix.

Suitable for small projects, where only one person works on a file
at a time.

Works by locking files, preventing check-out by other developers.
Check in files when done editing – changes now available to others.
Lock-Modify-Unlock model.

Keeps deltas between versions; can restore, compare, etc. Can
manage multiple branches of development.

Remains a very useful tool for personal projects – and articles,
lectures, essays, etc.

RCS is included in all Unix/Linux distributions.

Further reading: man rcsintro on DICE.



Lock-Modify-Unlock



CVS and SVN

CVS is a much richer system, (originally) based on RCS.
Subversion (SVN) very similar.

Handles entire directory hierarchies or projects – keeps a single
master repository for project.

Is designed for use by multiple developers working simultaneously –
Copy-Modify-Merge model replaces Lock-Modify-Unlock.

If conflicting updates are checked in, CVS automatically merges
changes, if it can. Otherwise flags problem to second user.

Pattern of use: check out entire project (or subdirectory) (not
individual files). Edit files. Do update to get latest versions of
everything from repository and check for conflicting updates.
Check in your edits.

Central repository may be on local filesystem, or remote.

Many additional features.



Copy-Modify-Merge



Copy-Modify-Merge



Distributed version control

e.g. Darcs, Git, Bazaar, Mercurial.

All the version control tools we’ve talked about so far use a single
central repository: so, e.g., you cannot check changes in unless you
can connect to its host, and have permission to check in.

Distributed version control systems (dVCS) allow many repositories
of the same software to be managed, merged, etc.

I reduces dependence on single physical node

I allows people to work (including check in, with log comments
etc.) while disconnected

I much faster VC operations

I much better support for branching

I makes it easier to republish versions of software

I But... much more complicated and harder to understand



Distributed VCS



Distributed VCS



Branches

Simplest use of a VCS gives you a single linear sequence of
versions of the software.

Sometimes it’s essential to have, and modify, two versions of the
same item and hence of the software: e.g., both

I the version customers are using, which needs bugfixes, and

I a new version which is under development

As the name suggests, branching supports this: you end up with a
tree of versions.

What about merging branches, e.g., to roll bugfixes in with new
development?

With CVS/SVN, this is very hard. Distributed version control
systems support it much better, so developers use branches a lot
more.



Releases

Releases are configurations packaged and released to users.

alpha release for friendly testers only: may still be buggy, but
maybe you want feedback on some particular thing

beta release for any brave user: may still have more bugs than a
real release

release candidate sometimes used (e.g. by Microsoft) for
something which will be a real release unless fatal bugs are found

bugfix release e.g. 2.11.3 replaces 2.11.2 - same functionality, but
one or more issues fixed

minor release e.g. 2.11 replacing 2.10: basically same functionality,
somehow improved

major release e.g. 3.0 replacing 2.11: significantly new features.

Variants, e.g. even (stable) versus odd (development) releases...



Software configuration management process

Key activities (from SWEBOK Ch7):

I software configuration identification – what needs to be
controlled, what are the relationships, what constitutes a
release?

I software configuration control – processes for agreeing to
make a change (see later lecture on Deployment and
Maintenance)

I software configuration status accounting – where’s the
product at? what’s in the latest release? how fast are change
requests being dealt with?

I software configuration auditing – is it actually being done
right?

I software release management and delivery – we’ll talk about
build tools, but see also later lecture on Deployment and
Maintenance.



Dependencies

Much of software engineering can be seen as managing
dependencies, in the most general sense:

A depends on B if, when B changes, it’s possible A may need to
change as a consequence

Some of this is captured in the software configuration identification
(how much depends on just how you do that).

Some is general, e.g., Foo.class will depend on Foo.java.

If the change that may be forced is, e.g., a change to the code, a
human will have to make it.

If it’s just that something needs to be recompiled, we can
automate it provided a tool has the dependency information.



Build tools

Given a large program in many different files, classes, etc., how do
you ensure that you recompile one piece of code when another
than it depends on changes?

On Unix (and many other systems) the make command handles
this, driven by a Makefile. Used for C, C++ and other ‘traditional’
languages (but not language dependent).



part of a Makefile for a C program

OBJS = ppmtomd.o mddata.o photocolcor.o vphotocolcor.o dyesubcolcor.o

ppmtomd: $(OBJS)

$(CC) -o ppmtomd $(OBJS) $(LDLIBS) -lpnm -lppm -lpgm -lpbm -lm

ppmtomd.o: ppmtomd.c mddata.h

$(CC) $(CDEBUGFLAGS) -W -c ppmtomd.c

mddata.o: mddata.c mddata.h

Makefiles list the dependencies between files, and the commands
to execute when a depended-upon file is newer.

make has many baroque features – and exists in many versions.
(Just use GNU Make.)

Like version control, a Makefile is something every C program
should have if you want to stay sane.



Ant

make can be used for Java.

However, there is a pure Java build tool called Ant.

Ant Buildfiles (typically build.xml) are XML files, specifying the
same kind of information as make.

There is an Eclipse plugin for Ant.



part of an Ant buildfile for a Java program

<?xml version="1.0" encoding="ISO-8859-1"?>

<project name ="Dizzy" default = "run" basedir=".">

<description>

This is an Ant build script for the Dizzy chemical simulator. [...]

</description>

<!-- Main directories -->

<property name = "source" location = "${basedir}/src"/> [...]

<!--General classpath for compilation and execution-->

<path id="base.classpath">

<pathelement location = "${lib}/SBWCore.jar"/> [...]

</path> [...]

<target name = "run" description = "runs Dizzy" depends =" compile, jar">

<java classname="org.systemsbiology.chem.app.MainApp" fork="true">

<classpath refid="run.classpath" />

<arg value="." />

</java>

</target> [...]

</project>



Maven

Maven extends Ant’s capatibilities to include management of
dependencies on external libraries

Maven buildfiles (typically pom.xml) are XML files, specifying the
same kind of information as Ant buildfiles but also which classes
and packages depend on which versions of which libraries.

Maven is considerably more complex than Ant, and considerably
more useful for projects using many external libraries (i.e., most
Java projects).

There is an Eclipse plugin for Maven (actually, two).



A Maven buildfile for a Java program

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.app</groupId>

<artifactId>my-app</artifactId>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<name>Maven Quick Start Archetype</name>

<url>http://maven.apache.org</url>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.8.2</version>

<scope>test</scope>

</dependency>

</dependencies>

</project>



Per-platform code configuration

Different operating systems and different computers require code
to be written differently. (Incompatible APIs. . . ). Writing portable
code in C (etc.) is hard.

Tools such as GNU Autoconf provide ways to automatically extract
information about a system. The developer writes a (possibly
complex) configuration file; the user just runs a shell script
produced by autoconf.

(Canonical way to install Unix software from source:
./configure; make; make install.)

Problem is less severe with Java. (Why?) But still tricky to write
code working with all Java dialects.



Reading

Required: Chapter 1, Fundamental Concepts, of the SVN book
http://svnbook.red-bean.com/

Suggested: man rcsintro

Suggested: Eclipse Team Programming with CVS (see above)

Suggested: Tutorial about dVCS, http://hginit.com/00.html

Suggested: browse http://www.junit.org.

http://svnbook.red-bean.com/
http://hginit.com/00.html
http://www.junit.org

