
Security engineering

Paul Jackson

School of Informatics
University of Edinburgh



What is “security”?

A large topic – see UG3 course Computer Security.

Here we will not discuss topics such as multi-level security,
encryption, operating system exploits, . . .

We’ll look at high-level definitions, and briefly at programming
practices in normal application software.

2 / 16



Security requirements

Security is an important class of non-functional requirements
including:

I confidentiality – information does not leak

I integrity – information cannot be tampered with

I authentication – parties are who they say they are

I authorisation – parties can only do what they should be able
to do

I non-repudiability – agreements made cannot be denied later,
c.f., digital signatures.

Availability, performance etc. can also be compromised by (among
other things) denial of service attacks as a result of security
failures.

3 / 16



Why be paranoid?

Because they are out to get you.

There is a large number of people out on the Net who will attack
your system. Some are “script kiddies”; some are spammers; some
are extortionists . . .

Informatics perimeter firewall blocks several hundred thousand
probes per day.

NB some aspects of security mandated by law, e.g. Data
Protection Act imposes responsibility to keep certain data
appropriately private.

4 / 16



Typical attack

Machine runs a publicly accessible service, such as sshd.

Attackers send a carefully crafted very long string to sshd. sshd

didn’t check length of input from network – input buffer overflows
into program code or function stack.

Result: attacker gets their code executed by sshd – which runs
privileged. Machine is now totally compromised, as is everything
that trusts it.

Once discovered, such a penetration costs many person-weeks of
effort to clear up after.

5 / 16



“Monster Mitigations” from CWE

Common Weakness Enumeration: a list of types of security
weaknesses that arise in software, aiming to help in discussing and
improving security. Annual report.

The “monster mitigations” are high-level principles that are
effective against many weaknesses.

1. Establish and maintain control over all of your inputs.

2. Establish and maintain control over all of your outputs.

3. Lock down your environment.

4. Assume that external components can be subverted, and your
code can be read by anyone.

5. Use industry-accepted security features instead of inventing
your own.

6 / 16



M1: Establish and maintain control over all of your inputs

Many attacks work by handing the program illegal input that
causes unintended behaviour. So validate input:

I deal with input of any length

I deal with arbitrary binary bytes (beware character encoding
systems)

I check for specific escape characters (e.g. HTTP, HTML)

I ensure numerical data is within intended range

I check validity of URLs, filenames, etc.

I check cookies (ideally, only ever send out cryptographically
signed data in cookies)

7 / 16



M1 continued

I Beware that doing validity checking is not easy. Use a trusted
library if possible.

I Sometimes you handle input which is effectively a program
that will be executed by an application. E.g. HTML with
Javascript. It is particularly hard to check this for malicious
usages. Why?

I complete mediation: validating data is no good if there’s a
back door (e.g. input taken from a user’s file) to get bad data
in: make sure validation happens at a bottleneck.

I avoid sharing: data in shared places opens possibilities for
information flow you didn’t expect

8 / 16



M1 example: Buffer overflow

The classic attack.

The solution: always check the length! Or use routines that
truncate the input to fit the buffer.

(But is it OK silently to change user’s input?)

In pure Java, buffer overflow can’t happen (why not?). But Java
implementations may use native C libraries in some classes.

9 / 16



M2: Establish and maintain control over all of your
outputs.

Partner to M1. The danger is: you take untrusted input from
somewhere, and use it to build some kind of message which you
output to some component or application that will trust you. If
your untrusted input is malicious, and you do not adequately
control the structure and content of the output you construct, it
may not be even structurally what you intended.

E.g. (from
http://cwe.mitre.org/data/definitions/116.html)

<% String email = request.getParameter("email"); %>

...

Email Address: <%= email %>

10 / 16

http://cwe.mitre.org/data/definitions/116.html


M3: Lock down your environment

(more relevant to sysadmins than programmers) E.g.

I Least privilege: allow people/programs/classes to do only
what they need to do. Run your code with the lowest privilege
possible.

I Beware releasing information valuable to attackers in error
messages

I Use whatever facilities are in your language/OS/compiler to
check for vulnerabilities such as buffer overflow

I Keep up to date with security patches!

11 / 16



M4: Assume that external components can be subverted,
and your code can be read by anyone

So:

I do not rely on “security by obscurity”

I more controversial: even go the other way, keep your design
and code simple, and use open design, i.e. keep the security
mechanism public

I if you’re writing a server, don’t let your security case depend
on what the clients do, even if you’re also writing the clients.

12 / 16



M5: Use industry-accepted security features instead of
inventing your own.

Writing security algorithms – for authentication over an untrusted
network, for encryption, etc. etc. – is very very hard. The
literature is full of algorithms that turned out to have security
flaws. As a non-expert you will almost certainly make a mistake –
even as an expert you probably will!

So use standard, well-examined, trusted algorithms, and where
possible, standard, well-examined, trusted implementations of
them.

13 / 16



Beware race conditions

A race is when two (or more) events happen independently, and
depending on the order, different things happen.

In particular, because of multi-tasking, arbitrary things may be
done by other processes between any two lines of your program.

For example: “create file, protect it” is not safe – attacker may
open file between creation and protection. It must be created in a
safe state.

14 / 16



Beware social engineering

Your carefully crafted encryption, authentication and authorization
scheme is no use if it all rests on a user’s password being secret
and the user falls for a phishing scam...

“Ninety per cent of office workers at London’s Waterloo Station
gave away their computer password for a cheap pen, compared
with 65 per cent last year.” (Informal study for InfoSecurity
Europe 2003. NB no attempt made to verify the “passwords”.)

http://www.theregister.co.uk/2003/04/18/office_workers_give_away_passwords/

15 / 16

http://www.theregister.co.uk/2003/04/18/office_workers_give_away_passwords/


Reading

Suggested: Browse CWE/SANS Top 25 Most Dangerous Software
Errors

Suggested: Ross Anderson’s paper Why Information Security is
Hard: an Economic Perspective

Suggested: Secure Coding Guidelines for the Java Programming
Language

16 / 16


