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What is design?

Design is the process of deciding how software will meet
requirements.

Usually excludes detailed coding level.
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Outputs of design process

Outputs include

I models.
I E.g. using UML or Simulink
I Often graphical
I Can be executable

I Written documents
I Important that these record reasons for decisions
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(Some) criteria for a good design

I It can meet the known requirements
(functional and non-functional)

I It is maintainable:
i.e. it can be adapted to meet future requirements

I It is straightforward to explain to implementors

I It makes appropriate use of existing technology,
e.g. reusable components

Notice the human angle in most of these points, and the
situation-dependency, e.g.

I whether an OO design or a functional design is best depends
(partly) on whether it is to be implemented by OO
programmers or functional programmers;

I different design choices will make different future changes
easy – a good design makes the most likely ones easiest.
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Levels of design

Design occurs at different levels, e.g. someone must decide:

I how is your system split up into subsystems?
(high-level, or architectural, design)

I what are the classes in each subsystem?
(low-level, or detailed, design)

At each level, decisions needed on

I what are the responsibilities of each component?

I what are the interfaces?

I what messages are exchanged, in what order?
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Examples of architectures

I Client-server

I Peer to peer

I Message bus

See the Suggested Readings for more on these and other examples.
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What is architecture?

Many things to many people.

The way that components work together

More precisely, an architectural decision is a decision which affects
how components work together.

Pervasive, hence hard to change. Indeed an alternative definition is
“what stays the same” as the system develops, and between
related systems.
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Classic structural view

Architecture specifies answers to:

I what are the components?
Where shall we put the encapsulation barriers? Which
decisions do we want to hide inside components, so that we
can change them without affecting the rest of the system?

I what are the connectors?
How and what do the components really need to
communicate? What should be in the interfaces? What
protocols should be used?

The component and connector view of architecture is due to Mary
Shaw and David Garlan – spawned specialist architectural
description languages, and influenced UML2.0.
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More examples of architectural decisions

I what language and/or component standard are we using?
(C++, Java, CORBA, DCOM, JavaBeans...)

I is there an appropriate software framework that can be used?

I what conventions do components have about error handling?

Clean architecture helps get reuse of components.
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Detailed design

Happens inside a subsystem or component.

E.g.:

I System architecture has been settled by a small team written
down, and reviewed.

I You are in charge of the detailed design of one subsystem.

I You know what external interfaces you have to work to and
what you have to provide.

I Your job is to choose classes and their behaviour that will do
that.

Idea: even if you’re part of a huge project, your task is now no
more difficult than if you were designing a small system.

But: your interfaces are artificial, and this may make them harder
to understand/negotiate/adhere to.
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Software Design Principles

Key notions that provide the basis for many different

software design approaches and concepts.
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Design Principles: initial example

Which of these two designs is better?

A) public class AddressBook {

private LinkedList<Address> theAddresses;

public void add (Address a) {theAddresses.add(a);}

// ... etc. ...

}

B) public class AddressBook extends LinkedList<Address> {

// no need to write an add method, we inherit it

}

C) Both are fine

D) I don’t know
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Design Principles: initial example (cont.)

A is preferred.

I an AddressBook is not conceptually a LinkedList, so it
shouldn’t extend it.

I If B chosen, it is much harder to change implementation, e.g.
to a more efficient HashMap keyed on name.
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Design principles 1

Cohesion is a measure of the strength of the relationship between
pieces of functionality within a component.

High cohesion is desirable.

Benefits of high cohesion include increased understandability,
maintainability and reliability.
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Design principles 2

Coupling is a measure of the strength of the inter-connections
between components.

Low or loose coupling is desirable.

Benefits of loose coupling include increased understandability and
maintainability.
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Design principles 3

I abstraction - procedural/functional, data
The creation of a view of some entity that focuses on the
information relevant to a particular purpose and ignores the
remainder of the information
e.g. the creation of a sorting procedure or a class for points

I encapsulation / information hiding
Grouping and packaging the elements and internal details of
an abstraction and making those details inaccessible’

I separation of interface and implementation
Specifying a public interface, known to the clients, separate
from the details of how the component is realized.
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Design principles 4

I decomposition, modularisation
dividing a large system into smaller components with distinct
responsibilities and well-defined interfaces
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Modeling

Let’s say: a model is any precise representation of some of the
information needed to solve a problem using a computer.

E.g. a model in UML, the Unified Modeling Language.

A UML model

I is represented by a set of diagrams;

I but has a structured representation too (stored as XML);

I must obey the rules of the UML standard;

I has a (fairly) precise meaning;

I can be used informally, e.g. for talking round a whiteboard;

I and, increasingly, for generating, and synchronising with,
code, textual documentation etc.
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Pros and cons of BDUF

Big Design Up Front

I often unavoidable in practice

I if done right, simplifies development and saves rework;

I but error prone

I and wasteful.

Alternative (often) is simple design plus refactoring.

XP maxims:

I You ain’t gonna need it

I Do the simplest thing that could possibly work
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Reading

Suggested: SWEBOK v3 Ch2 for an overview of the field of
software design

Suggested: Sommerville 10th Ed, Ch 6 on Architectural Design

Suggested: An Introduction to Software Architecture tech report.
David Garlan and Mary Shaw. 1994.

Suggested: Software Architecture and Design chapters of
Microsoft Application Architecture Guide, 2nd Edition.
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