
Software development processes: from the
waterfall to the Unified Process

Paul Jackson

School of Informatics
University of Edinburgh



The Waterfall Model

Image from Wikipedia

2 / 16



Pros, cons and history of the waterfall

+ better than no process at all – makes clear that
requirements must be analysed, software must be
tested, etc.

− inflexible and unrealistic – in practice, you cannot
follow it: e.g., verification will show up problems with
requirements capture.

− slow and expensive – in an attempt to avoid
problems later, end up “gold plating” early phases,
e.g., designing something elaborate enough to
support the requirements you suspect you’ve missed,
so that functionality for them can be added in coding
without revisiting Requirements.

Introduced by Winston W. Royce in a 1970 paper

as an obviously flawed idea!

3 / 16



Domains of use for waterfall-like models

embedded systems : Software must work with specific hardware:
Can’t change software functionality later.

safety critical systems : Safety and security analysis of whole
system is needed up front before implementation

some very large systems : Allows for independent development of
subsystems

4 / 16



Spiral models

Split project into controlled iteration: each iteration is a
mini-waterfall.

+ Mitigate risk. E.g. check user requirements, try out
technology, practice new techniques in an early iteration to
catch errors before main cost of project starts.

− Cost: e.g., repeated testing and documentation. A few
projects are so low risk that iteration isn’t cost-effective.

In practice, need for rework: essential to allow time for
refactoring.

Big projects need different approaches to different iterations.

5 / 16



Steps towards the Unified Process

I 1960s - 1987: Ivar Jacobson at Ericsson: early
component-based development, architectural block diagrams.

I 1987-1995: Jacobson founded Objectory (“Object factory”).
Use cases promoted as driver of development.

I 1995: Grady Booch, Jim Rumbaugh and Ivar Jacobson
together at Rational, which bought Objectory. “The methods
war is over – we won.” First version of Unified Method
produced. Controversial: quickly overshadowed by UML.

I 1995-1997: Rational Objectory: added controlled iteration

I 1998: (Rational) Unified Process

Unified process: the public domain, generic ideas

Rational unified process: more detailed, commercial. Now IBM.

Lots of variants, e.g. OpenUP, EnterpriseUP...

6 / 16



Characteristics of UP

Controlled
iterative

Use−Case
Driven

Architecture
Centric

Tailorable

Get early feedback

Business needs drive
application requirements

Understand user
requirements

Improve quality

Tailor the process

Increase reuse

Extensibility

Mitigate major risks
early

Early user access

(adapted from Rational slide)

7 / 16



UP phases
One cycle consists of phases:

I Inception ends with commitment from the project sponsor to
go ahead: business case for the project and its basic feasibility
and scope known.

I Elaboration ends with
I basic architecture of the system in place,
I a plan for construction agreed,
I all significant risks identified,
I major risks understood enough not to be too worried.

I Construction (definitely iterative) ends with a beta-release
system .

I Transition is the process of introducing the system to its users.

Iteration:

I process for one product will have several cycles

I each instance of a phase might have several iterations

8 / 16



UP phases: risk management

(adapted from Rational slide)

9 / 16



Workflows: 9 activites

6 Engineering workflows:

I Business modelling

I Requirements

I Analysis and design

I Implementation

I Test

I Deployment

3 Supporting workflows:

I Configuration and change management

I Project management

I Environment (e.g. process and tools)

10 / 16



Workflows used in phases

(adapted from Rational slide)

11 / 16



UP best practices

Six fundamental best practices:

1. Develop software iteratively. Customer prioritisation, best
first.

2. Manage requirements. Explicit documentation, analyze
impact before adopting.

3. Use component-based architectures. Promote systematic reuse

4. Visually model software. UML...

5. Verify software quality. Testing, checking coding standards...

6. Control change to software. Configuration management...

12 / 16



Personal Software Process I

Watts Humphrey, A discipline for software engineering p9:

“The following is the approach taken by the PSP:

I Identify those large-system software methods and practices
that can be used by individuals.

I Define the subset of those methods and practices that can be
applied while developing small programs.

I Structure those methods and practices so they can be
gradually introduced.

I Provide exercises suitable for practising these methods in an
educational setting.”

13 / 16



Personal Software Process II

PSP provides a ladder of gradually more sophisticated practices.

Explicit phases of development, e.g. separate design from coding.

Lots of forms to fill in, e.g. time recording log, defect recording log.

Aim is to provide numerical data adequate for identifying weak
areas and tracking improvements, in process and in own skills.

More info: http://www.sei.cmu.edu/tsp/

Tool support: http://www.processdash.com/

14 / 16

http://www.sei.cmu.edu/tsp/
http://www.processdash.com/


Where does PSP fit in?

PSP is a relatively high ceremony process, aimed at individuals and
small projects. It’s often used as a training process by people who
expect to end up using a high ceremony process – such as UP – on
large projects.

TSP, Team Software Process, is an intermediate.

Agile processes such as Extreme Programming take a very different
approach – owing partly to deep philosophical differences, partly to
different context assumptions. Next lecture.

A process maturity model such as CMMI (from SEI) can be used
to help choose how to improve a software development process so
as to fit the actual needs of the organisation.

15 / 16



Reading

Suggested: Browse the web to learn more about the processes
mentioned:

I Waterfall
I Spiral
I (Rational) Unified Process
I Personal Software Process
I Capability Maturity Model

Suggested: Sommerville Ch 2 (9th and !0th Ed) and linked pages

16 / 16


