
How to improve the quality of your processes

Paul Jackson

School of Informatics
University of Edinburgh



Prior question

Q: Why improve a process (let alone all your processes?)

To manage (reduce, predict and plan for) risk that bad things will
happen to you.

2 / 30



Risk management

I Analyse risks during the (pre-)planning stage of a project, so
you can

I Manage them when they happen during the project

Categories of risk:

I project risks that affect schedule or resources

I product risks that affect software quality or performance

I business risks that affect the software developer or buyer

Examples of typical risks: staff loss, management change, missing
equipment, changing requirements, delays in requirements analysis,
mis-estimation of cost, competitor gets to market first.

3 / 30



Planning for risks

Identify the risks early, in various possible categories.

Analyse each identified risk. Is it minor, major, serious, fatal?
What is the chance of it happening?

Plan how to cope with each risk. Can it be avoided by reducing the
probability of occurrence? Can you plan to minimise the effect if it
does happen? What is your contingency plan if it does happen?

Exercise: Consider how you might plan mitigation for:

I The lead designer on the human interface team leaves.

I (Bespoke software) The customer changes the requirements
to adapt to a new company acquisition.

I (Shrinkwrap software) A competitor releases a product that
already has a key feature of the product you’re developing.

Consider also how you might plan to reduce the risk of these things
happening in future projects.

4 / 30



Software quality

Q: What is it?

Ultimately, anything that the customer cares about.

5 / 30



Approaches to improving quality

May focus on

1. the software product itself
Verification, validation, testing, code/design reviews,
inspections, walkthroughs are product-focused approaches to
quality improvement.

2. the process by which the software is produced

In this lecture we consider process-focused approaches.

6 / 30



Process focus

Advantages:

I potential to improve all products

I possibility of certifying a whole organisation

I some important things, especially planning (and thus
time-to-market, cost etc.), are hard to approach in any other
way.

Disadvantages:

I done badly, can easily prove very costly with low benefits:
easy to spend time and money without improving any product

7 / 30



Centres of process-focused QA

Possibly directions of influence, each with own philosophy.

1. Organisation −→ Project −→ Individual

Organisation’s management decrees, influencing projects
whose managers direct individuals into desired behaviour.

2. Organisation ←− Project ←− Individual

Individuals introduce improvements which are rolled up and
out to the rest of the project and the rest of the organisation.

Making these centres work together productively depends on the
software engineering culture of the organisation and ethics of the
individual.

8 / 30



Areas and terminology

I Quality planning – how will you ensure that this project
delivers a high quality product?

I Quality metrics – what measurements must you make in order
to tell whether what you’re doing is making the difference you
intend?

I Quality improvement – what can you learn from this project
to help you plan and run the next one better?

I Quality control – how can you ensure and prove that your
quality plan was followed?

I Quality assurance – an umbrella term for the whole field.

9 / 30



Standard QA models

We’ll look briefly at two examples with different aims:

I CMMI, the Capability Maturity Model Integration (from
Carnegie Mellon’s Software Engineering Institute), a
development of the very popular Capability Maturity Model
(CMM).
Crucial idea here is that maturity increases: quality planning,
control and improvement framework.

I ISO9000 - family of quality standards
Less emphasis on improvement: quality control framework.

These can be complementary (resolution of a historical argument
about which should be used).

10 / 30



Standards

There are many types of standard. Coding standards tell you how
to format code. Documentation standards tell you how to organize
documentation. Quality standards tell you how to . . . organize
quality control.

ISO 9001 is an international standard for quality assurance. It
specifies how to specify documents and procedures that a company
should follow in its quality control. It does not specify or require
any level of product quality.

11 / 30



CMMI

The Integrated Capability Maturity Model is a successor to the
influential CMM. It provides a (generic, specializable to software)
description of process areas, goals associated with each area, and
practices that may achieve goals. Organizations are assessed at a
maturity level according to how they achieve goals and follow
practices. Levels are:

1. Initial: goals may be met, but by heroics

2. Managed: documented plans, resource management,
monitoring, etc.

3. Defined: organization defines process framework.
Measurements collected for use in improvement.

4. Quantitatively managed: use measurement and statistical etc.
methods during process.

5. Optimizing: process improvement happens, driven by
quantitative measures.

12 / 30



CMMI vs. ISO 9001: Case Study

Boeing Case Study, Dale Spaulding, 2005

13 / 30

http://www.dtic.mil/ndia/2005cmmi/tuesday/spaulding.pdf


Total Quality Management
– one of the inspirations for CMMI.

Plan, Do, Check, Act – the Deming cycle.

TQM embodies the idea that improving quality is everyone’s job –
not just that of the QA department. Typical principles – these
quoted from http://www.siliconfareast.com/tqm.htm:

1. Quality can and must be managed.

2. Everyone has a customer to delight.

3. Processes, not the people, are the problem.

4. Every employee is responsible for quality.

5. Problems must be prevented, not just fixed.

6. Quality must be measured so it can be controlled.

7. Quality improvements must be continuous.

8. Quality goals must be based on customer requirements.

Then there’s Six Sigma, “TQM on steroids”.
14 / 30

http://www.siliconfareast.com/tqm.htm


Bottom line

Things only get better when those involved

I have enough information to tell what’s wrong

I think intelligently about it

I plan how to improve

I actually make sure the plan happens

I check whether it worked.

Many ways to achieve this, many ways to fail. Not specific to
software.

15 / 30



Don’t be seduced by Methodology

There is a big difference between methodology and Methodology.
A methodology is a basic approach one takes to get the job done,
consisting of:

I a tailored plan (specific to the work at hand)

I a body of skills necessary to effect the plan

A Methodology is an attempt to centralize thinking. All
meaningful decisions are taken by the Methodology builders, not
by the staff assigned to do the work. The overt case for the
Methodology includes standardization, documentary uniformity,
managerial control and state-of-the-art techniques. The covert
case is simpler and cruder: the idea that project people aren’t
smart enough to do the thinking.

(adapted from Peopleware, Tom DeMarco & Timothy Lister, p115)

16 / 30



Management

Two types of management are relevant to software:

I people management

I project management

Both types are best seen as enabling activities: a good manager
doesn’t do the actual work of building software but aims to
maintain an environment in which it’s possible for people to get on
and do so!

Of course many would argue that the bottom line is always
financial.

A manager is not the same as a leader...

17 / 30



Software project management

A project manager arranges for the following functions to be
fulfilled:

I Planning

I Organizing

I Staffing

I Monitoring

I Controlling

I Innovating

I Representing

Making stuff happen, getting obstacles out of the way.

18 / 30



Cost estimation

Before starting, or bidding for, any significant project, need to
know estimate how much it will cost.

Many things are factors in this estimation: but the main factors
are software size and complexity, and engineer productivity.

We will here consider only software size and complexity.
(Productivity is ratio of this to time required.)

19 / 30



LoC

A simple measure of software size is lines of code (LoC).

Not very meaningful by itself. What is a line of code?

How many lines of Haskell correspond to how many lines of Java
correspond to how many lines of C? What about library routines?

Still widely used; alternatives like “function points” exist.

20 / 30



Estimation

Metrics are all very well, but how do you guess estimate them for
software that doesn’t exist yet? Some approaches:

I algorithmic cost modelling: develop (from past data) a model
relating size/complexity to ultimate cost

I expert consensus: get a bunch of expert estimates. Compare,
discuss, repeat until convergence.

I analogy: relate the cost to that of similar completed projects

I available effort: that way madness lies...

I what the customer will pay: dangerous...

21 / 30



COCOMO I
COCOMO (Constructive Cost Model) is a long-standing
algorithmic model, publicly available, well supported, and widely
used.

Basic idea:

Effort = A× SizeB ×M

where

I “Effort” is measured in person months
I A is a constant, dependent on kind of software and developing

organisation
I B typically in range 1 . . . 1.5
I M is a multiplier. Product of 15 factors, effort adjustment

each typically in range 0.9 . . . 1.4, that are derived from
ratings of attributes such as required reliability, required time
to market and software engineer capability.

22 / 30



COCOMO II

Getting good values for A, B and M is highly non-trivial.

Considerable data available. Versions/submodels/tweaks available
to account for factors like reuse, generated code, etc. See
Wikipedia page.

23 / 30



Why do projects almost always slip...

... relative to human intuitions of how long they should take?

(This is why we need something like COCOMO.)

Discussed in paper The Rational Planning of (Software) Projects,
Mark C. Paulk

This paper discusses the effects of three features of human nature:

I “people tend to be risk-averse when there is a potential of
loss”

I “people are unduly optimistic in their plans and forecasts”

I “people prefer to use intuitive judgement rather than
(quantitative) models”

It goes on to discuss how a framework like the CMM can help.

24 / 30



Gantt charts

An example of a project planning tool, to help with scheduling.

Divide project into tasks, with milestones at the end. Analyse (e.g.
in graphical network) dependencies between tasks. Now lay these
out as bars running across time, respecting dependencies. This
reveals the critical path of tasks for the project. Optionally, show
permissible slippage with shaded bars.

I Task 1 takes 5 weeks.

I Task 2 takes 3 weeks.

I Task 3 takes 9 weeks.

I Task 4 takes 6 weeks, and depends on tasks 1 and 2.

I Task 5 takes 3 weeks, and depends on task 3.

I Task 6 takes 6 weeks, and depends on tasks 1 and 3.

I Task 7 takes 7 weeks, and depends on task 4.

25 / 30



0 3 6 9 12 15 18

T1

T2

T4

T6

T7

T5

T3

26 / 30



Project tracking

The project manager needs to decide how and what to track. E.g.:

- how much time each person spent on each task, and when?

- just total effort expended?

- something in between?

Aim is to find a happy medium between having too little
information to tell whether things are OK, and so much that it’s
very time-consuming to manage the information. Ideally want
meaningful info!

Tools are available and helpful, esp. for big projects, but they
don’t create the data or decide what to do as a result...

27 / 30



Revising the project plan

As the project goes on, estimates have to be revised in the light of
progress, unforeseen problems etc. Typically a large project will
replan once a week.

Depending on the circumstances slippages may mean

I reallocating resource (but see The Mythical Man Month)

I cutting functionality

I asking the customer for more money

I losing profit

Tell them the most important metric is what proportion of the
project staff’s time is spent explaining to the customer why the
project is late Anonymous software engineer.

28 / 30



Reading

Required: SWEBOK v3 Ch10

Suggested: The Rational Planning of (Software) Projects, Mark C.
Paulk

Suggested: Stevens Ch 4,19,20

Suggested: Sommerville - see index

Suggested: Wikipedia

29 / 30



Quotes of the day

Adding manpower to a late software project makes it
later.

(“Brooks’ Law”) Fred Brooks in The Mythical Man-Month (1975),
chapter 2

The ultimate management sin is wasting people’s
time.

Tom DeMarco and Timothy Lister in Peopleware

Any process that tries to reduce software
development to a “no brainer” will eventually produce
just that: a product developed by people without brains.

Any Hunt and Dave Thomas in Cook until done

30 / 30


