
Software component interactions and sequence
diagrams

Nigel Goddard

School of Informatics
University of Edinburgh

What do we need to know? Recap

Recall that this is an overview of software engineering, dipping into
some aspects. We’ve discussed:

I how to analyse requirements and summarise them in a use
case diagram;

I how to tell good design from bad;

I how to record basics of the static structure of our designed
system in a class diagram;

I how to get started with choosing an appropriate static
structure.

We have not discussed dynamic aspects of design: what operations
should our classes have, and what should they do?

Dynamic aspects of design

Suppose that we have decided what classes should be in our
system, provisionally. What next? Well, we have to meet the
requirements...

In the end, we need to know what operations they have, and what
each method should do.

Two ways of looking at this:

1. inter-object behaviour: who sends which messages to whom?

2. intra-object behaviour: what state changes does each object
undergo as it receives messages, and how do they affect its
behaviour?

Complementary: but in this course, we only consider 1. For 2,
UML provides an enhanced variant on the FSMs you saw last year.

For more info, do SEOC next year, and/or read the recommended
texts.

Thinking about inter-object behaviour

There’s no algorithm for constructing a good design. Create one
that’s good according to the design principles...

1. Your classes should, as far as possible, correspond to domain
concepts.

2. The data encapsulated in the classes is usually pretty easy to
define using the real world as a model.

3. Then look at the scenarios in the use cases, and work out
where to put what operations to get them done.

Some of this is easy. Hard parts are usually when several objects
have to collaborate and it isn’t clear which should take overall
responsibility.



Interaction diagrams

describe the dynamic interactions between objects in the system,
i.e. the pattern of message-passing.

Two main uses:

I Showing how the system realises [part of] a use case

I Showing how an object reacts to some message

Particularly useful where the flow of control is complicated, since
this can’t be deduced from the class model, which is static.

UML has two sorts, sequence and communication diagrams – the
differences are subtle, and we’ll only talk about sequence diagrams.

Developing an interaction diagram

1. Decide exactly what behaviour to model.

2. Check that you know how the system provides the behaviour:
are all the necessary classes and relationships in the class
model?

3. Name the objects which are involved.

4. Identify the sequence of messages which the objects send to
one another.

5. Record this in the syntax of a sequence diagram.

Simple :-)

A collaboration

LibraryMember
Copy

theBook : Book

theCopy :theLibraryMember :

aMember : BookBorrower

Sequence diagram

LibraryMember
theLibraryMember : CopytheCopy : theBook : Book

borrow(theCopy)

okToBorrow

borrow
borrowed

aMember : BookBorrower



Showing more detail

��
��

��
��

��
��
�

��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
�
��
�

��
��

		
		






��
�

��
��




���
�

borrow(theCopy)

borrow
borrowed

:LibraryMember :Copy : Book

okToBorrow

aMember : BookBorrower

Creation/deletion in sequence diagram

n=getName()

:Lecturer

:DirectorOfStudies

:UTO
getName()

new DirectorOfStudies (n)

destroy()

What is a good interaction pattern?

In designing an interaction, your first aim is obviously to design
some collection of operations that can work together to achieve
the aim.

Next, consider:

I conceptual coherence: does it make sense for this class to
have that operation?

I maintainability: which aspects might change, and how hard
will it be to change the interaction accordingly?

I performance: is all the work being done necessary?

Designing interactions

EverythingController

getJC(j:Job) : JobController
1

JobController

1

Job

1

0..*

0..*0..*

Problems?



Law of Demeter

in response to a message m, an object O should send messages
only to the following objects:

1. O itself

2. objects which are sent as arguments to the message m

3. objects which O creates as part of its reaction to m

4. objects which are directly accessible from O, that is, using
values of attributes of O.

More complex sequence diagrams

We’ve only discussed very simple sequence diagrams. UML
provides notation for reusing pieces of interactions, conditional or
iterative behaviour, asynchronous messages, etc. etc.

Reading

Suggested: The original paper on CRC cards, a technique for
designing interactions: A Laboratory for Object-Oriented
Thinking, by Kent Beck and Ward Cunningham. See web page.


