
UML class diagrams

Nigel Goddard

School of Informatics
University of Edinburgh

The Unified Modeling Language

UML is a graphical language for recording aspects of the
requirements and design of software systems.

It provides many diagram types; all the diagrams of a system
together form a UML model. Three important types of diagram:

1. Use-case diagram. Already seen in requirements lecture.

2. Class diagram. Today.

3. Interaction diagram. In the future.

Reminder: a simple use case diagram

Browser

Librarian

JournalBorrower

BookBorrower

Reserve book

Borrow copy of book

Return copy of book

Extend loan

Borrow journal

Update catalogue

Browse

Return journal

A class

Book

A class as design entity is an example of a model element: the
rectangle and text form an example of a corresponding
presentation element.

UML explicitly separates concerns of actual symbols used vs
meaning.

Many other things can be model elements: use cases, actors,
associations, generalisation, packages, methods,...

An object

jo : Customer

This pattern generalises: always show an instance of a classifier
using the same symbol as for the classifier, labelled
instanceName : classifierName.

Classifiers and instances

An aspect of the UML metamodel that it’s helpful to understand
up front.

An instance is to a classifier as an object is to a class: instance
and classifier are more general terms.

In the metamodel, Class inherits from Classifier, Object inherits
from Instance.

UML defines many different classifiers. E.g., UseCase and Actor
are classifiers.

Showing attributes and operations

Book
title : String
copiesOnShelf() : Integer
borrow(c:Copy)

Syntax for signature of operations (argument and return types)
adaptable for different programming languages. May be omitted

Compartments

We saw the standard:

I a compartment for attributes

I a compartment for operations, below it

They can be suppressed in diagrams.

They are omitted if empty.

You can have extra compartments labelled for other purposes, e.g.,
responsibilities of the class...

Visibility

Book

+ title : String

- copiesOnShelf() : Integer
borrow(c:Copy)

Can show whether an attribute or operation is

I public (visible from everywhere) with +

I private (visible only from inside objects of this class) with −

(Or protected (#), package (∼) or other language dependent
visibility.)

Association between classes

BookCopy
is a copy of

This generalises: association between classifiers is always shown
using a plain line. (Recall the associations between actors and use
cases!)

An instance of an association connects objects (e.g. Copy 3 of War
and Peace with War and Peace).

An object diagram contains objects and links: occasionally useful.

Association between classes

BookCopy
is a copy of

This generalises: association between classifiers is always shown
using a plain line. (Recall the associations between actors and use
cases!)

An instance of an association connects objects (e.g. Copy 3 of War
and Peace with War and Peace).

An object diagram contains objects and links: occasionally useful.

Rolenames on associations

Director of
Studies

StudentdirecteeDoS

Can show the role that one object plays to the other.

Useful when documenting the class: e.g. a class invariant for
DirectorOfStudies could refer to the associated Student objects as
self.directee (a set, if there can be more than one).

Can use visibility notation + − etc on role names too.

Class invariants

A class invariant is a statement which is supposed to be true of
every object of the class, all the time - a “sanity check”.

Very useful to make these explicit. Can be included as comments
on class diagrams, and in code.

May be formal, e.g. x + y = z, or informal, e.g. “the attribute
docstring describes the action of the button in concise English”.

If formal, it can be useful to have class invariants automatically
checked.

Clicker question

In a class diagram, a class may have compartments for:

1. attributes

2. operations

3. responsibilities

4. all of the above, but nothing else

5. all of the above, and other items

Multiplicity of association

LibraryMember

MemberOfStaff

Book

Copy

Journal

1

1..*

1 0..*

1 0..*

borrows/returns

borrows/returns

borrows/returns
1

0..*

is a copy of

Commas for alternatives, two dots for ranges, * for unknown
number. E.g. each Copy is a copy of exactly one Book; there must
be at least one Copy of every Book.

Navigability

Adding an arrow at the end of an association shows that some
object of the class at one end can access some object of the class
at the other end, e.g. to send a message.

Student Moduleis taking

Crucial to understanding the coupling of the system. NB direction
of navigability has nothing to do with direction in which you read
the association name.

Generalisation

LibraryMember

MemberOfStaff

This generalises: generalisation between classifiers is always shown
using this arrow.

Usually, but not necessarily, corresponds to implementation with
inheritance.

Usually, but not always, can read as is a e.g., Member of Staff is a
Library Member.

Generalisation

LibraryMember

MemberOfStaff

This generalises: generalisation between classifiers is always shown
using this arrow.

Usually, but not necessarily, corresponds to implementation with
inheritance.

Usually, but not always, can read as is a e.g., Member of Staff is a
Library Member.

Abstract operations and classes

An operation of a class is abstract if the class provides no
implementation for it: thus, it is only useful if a subclass provides
the implementation.

A class which cannot be instantiated directly – for example,
because it has at least one abstract operation – is also called
abstract. Java...

Can show abstract operation or class using italics for the name,
and/or using the property {abstract}.

Interfaces

In UML an interface is just a collection of operations, that can be
realised by a class.

<<interface>>
Stringifiable

stringify() : String

Module

stringify() : String

Printer

...

<<use>>

...

Stringifiable

Simpler diagram: WRITE ONCE

<<interface>>
Stringifiable

stringify() : String

Printer
pr

in
ts

Stringifiable

Module

stringify() : String

...

...

Many things other than classes can realise interfaces: can use the
lollipop symbol on e.g. components, actors.

Identifying objects and classes

Simplest and best: look for noun phrases in the system description!

Then abandon things which are:

I redundant

I outside scope

I vague

I attributes

I operations and events

I implementation classes.

(May need to add some back later, especially implementation
classes: point is to avoid incorporating premature design decisions
into your conceptual level model.)

Similarly, can use verb phrases to identify operations and/or
associations

Reading

Suggested: (class diagrams) Stevens ch 5.

