
HOMEWORK 3

Informatics 2-Software Engineering 2014/15

Ajitha Rajan

23rd October 2014

1 Overview

Implement the CCS design you handed in for homework 2. The customer in-
sisted on Java, so Java it is. Use the Eclipse IDE for your implementation and
test. Code for the interfaces is available on the web page (make sure you’ve
downloaded the most recent version and keep your eye out for possible up-
dates). Make sure you pay attention to these and the rest of the document.
If your code does not compile and run, you will be severely penalized in the
grading. You are required to follow the coding standard provided by us in
an appendix to this document. You will create automated system-level tests
for your CCS implementation and measure the code coverage achieved by your
tests. By system-level, we mean tests will test CCS as a whole, not the subsys-
tems defined in your design document. Thus, all tests will provide input to CCS
through the interface we provided, and will verify that the output matches your
expected output. We have provided sample tests and expected output that your
implementation is expected to pass at the minimum. Note: Naturally, this does
not preclude you from performing unit testing on your classes and subsystems
to ensure that they do what you think they are doing. You are just not required
to submit your unit tests and unit-test infrastructure as part of this assignment.
Detailed expectations follow below.

2 CCS Implementation Notes

1. First download the existing project from: http://www.inf.ed.ac.uk/

teaching/courses/inf2c-se/Coursework/coursework-2014/CruiseControl.

zip This can be placed anywhere, a temporary directory for example.

2. Open up Eclipse and select (or create a new) workspace

3. Select File→Import→General→Existing projects into workspace

4. Browse to wherever you unzipped the project to and select the folder
‘CruiseControl’

5. Make sure the “Copy projects into workspace” option is selected.

1

http://www.inf.ed.ac.uk/teaching/courses/inf2c-se/Coursework/coursework-2014/CruiseControl.zip
http://www.inf.ed.ac.uk/teaching/courses/inf2c-se/Coursework/coursework-2014/CruiseControl.zip
http://www.inf.ed.ac.uk/teaching/courses/inf2c-se/Coursework/coursework-2014/CruiseControl.zip

You will find several Java source files. You should only modify CruiseControlSystem.java

and BasicTests.java, the rest are support code that you should not mod-
ify.

Open the BasicTests.java file and you should find that you can Run this as
a JUnit test. When you do so, you will find that all three basic tests fail.
Question: Can I run this from the command-line? Answer: Yes, try this:

$ cd to CruiseControl/src/ directory

$ javac -cp /usr/share/java/junit4.jar *.java

$ java -cp .:/usr/share/java/junit4.jar org.junit.runner.JUnitCore BasicTests

2.1 Input

Input can be given via a file. Each separate line is treated as an input state.
You can see in ‘CommandLine.java’ that the input states are read in from a
file given on the command-line. Alternatively input state lines can be given as
a List or Array of Strings which each String representing an input state. In
‘BasicTests.java’ you will see how this is used to perform automatic testing of
two very basic properties.

Each input state, gives the values of the sensors on the car, these are in the
order defined in ‘InputState.java’ and are as follows:

1. Engine status as a boolean

2. Speed as a double

3. Brake pedal position as a double

4. Accelerator pedal position as a double

5. Start ccs button as a boolean

6. Stop ccs button as a boolean

7. Start accelerating button as a boolean

8. Stop accelerating button as a boolean

9. Resume button as a boolean

Each value is separated by a single space character. So an example input
state line is:

true 50.0 0.0 1.0 false false false false false

In addition, you can specify that a given state has not been changed since
the previous pulse. This is specified with the ‘-’.

Output states have the same format, but with an additional value at the end.
The additional value is a double which represents the position of the throttle.
Output states cannot contain ‘-’ characters.

2

2.2 Additional Hints

You will need to make sure you set the status of the buttons correctly. The
input states may cause the buttons to be pressed, but they may also use the ‘-’
character to leave them in whatever position they were last set to either by an
input state or by your CCS implementation.

Just because you set the accelerator to a particular position does not mean
that the speed of the car will reflect this. It may be going over terrain which
responds differently than expected. However, your task is simply to follow the
requirements and set the throttle to the correct position.

2.3 Version Control

It is recommended, but not required, that you keep your implementation and
tests under version control. Dice machines have the following version control
tools installed: RCS, CVS, SVN, GIT. You can use any of these. Following are
simple steps to set up a repository using SVN in your user directory on a DICE
machine,

Create Repository: Log in to a dice machine and create your repository in
your user directory. To create the repository, issue the following command:
svnadmin create ∼ /myrepository

Create your SVN user: Now that your repository is successfully set up, you’ll
need to create an svn user. Simply open the svnserve.conf file in the editor
of your choice:
pico ∼ /myrepository/conf/svnserve.conf
and add the following:

anon-access = none

auth-access = write

password-db = passwd

Now you’ll need to create a password file:

pico ~/myrepository/conf/passwd

Add a line in that file for your user in the format =

exampleuser = examplepassword

Run the svn server as daemon:
svnserve − d

Check out your repository onto your local machine. On your local machine,
go to where you keep your course stuff. Let’s say it is in /workspace. Then
use the svn co command to check out a copy of your project.

cd ~/workspace

svn co svn+ssh://username@dice-hostname/path to repository/myrepository

Common svn commands: svn add is used to create a new file or directory
on the SVN repository. Note that the file won’t appear in the repos-
itory until you do an svn commit.

svn update or svn up. This command syncs your machine with the
server. If you have made local changes, it will try and merge any

3

changes on the server with your changes on your machine. Always
run svn update before svn commit.

svn commit or svn ci. This command recursively sends your changes
to the SVN server. It will commit changed files, added files, and
deleted files. Note that you can commit a change to an individual file
or changes to files in a specific directory path by adding the name of
the file/directory to the end of the command. The -m option should
always be used to pass a log message to the command.

svn delete. This does what it says! When you do an svn commit the file
will be deleted from your local sand box immediately as well as from
the repository after committing.

svn diff. This command can be used to find out what has changed be-
tween two revisions using:
svn diff − r revision1 : revision2 FILENAME.
For example: svn diff − r 168 : 169 index.xml will output a diff
showing the changes between revisions 168 and 169 of index.xml.

3 Testing Notes

You must implement requirements-based tests to test your requirements from
homework1. Remember, you will need specific, concrete inputs as well as con-
crete expected outputs . Moreover, even if the test checks only, for instance,
the CCS accelerating by pressing the start acceleration button, you must still
specify all the system inputs and outputs to ensure that the application under
test will return the result you wish to check. Test case implementations should
use descriptive names, both for the class and the methods you implement. We
do not want to see test1(), runTest4(), etc. Implementation of test cases must
follow provided coding standards as well. You must also measure the statement
coverage achieved by these tests and include a report on the coverage level and
which tests passed and failed (include this report with what you hand in). If you
do not achieve at least 80% statement coverage, supplement your requirements-
based tests with additional system-level tests until you reach at least this level
of coverage.

4 Testing Tools

Below is a list of tools in Eclipse that will help with testing and coverage. We will
not provide tech support for these. Read the documentation and ask questions
of your peers on the forum.

Test Framework: JUnit
Code Coverage Tools: EclEmma for Eclipse

Running Junit. You need to add the JUnit library to the project to start
using it.
- Double-click on the CCS project within Package Explorer. This will both ex-
pand and select the project.
- Select Project > Properties from the main menu. This will bring up a prop-
erties box for your project.

4

- Select Java Build Path and click on the Libraries tab.
- Click Add Library..., select JUnit and click Next.
- Choose JUnit Library Version as JUnit 4 and click Finish.
- Click Ok in the properties box.
If you look under Package Explorer, there should now be a JUnit 4 entry. There
are a number of introductory video tutorials online you may want to look at:
https://www.youtube.com/watch?v=v2F49zLLj-8

https://www.youtube.com/watch?v=QEyxgtCEWMw

https://www.youtube.com/watch?v=oCNMinACgAk

For EclEmma installation, see http://www.eclemma.org/installation.

html and follow instructions in Option2: Installation from update site.
For user guide on use of EclEmma to measure coverage refer to http://www.

eclemma.org/userdoc/index.html and http://agile.csc.ncsu.edu/SEMaterials/

tutorials/eclemma/.

5 Deliverables

You are responsible for delivering the following as a single zip via the submit
command:

1. Implementation of CCS, incorporating all feedback provided on the design
assignment (the implementation must be located in the src/ directory)

2. Any required libraries for your implementation (in the lib/ directory)

3. A description of how to compile your code we will be using our own
script, but provide any additional instructions that are necessary for code
compilation.

4. Requirements-based tests in JUnit.

5. Report on these tests, including a list of which tests passed and which
failed (a single-PDF JUnit report is acceptable here).

6. Statement coverage report from these tests (EclEmma provides a nice
report format). Additional tests (in both formats) to achieve, at minimum,
80% statement coverage.

7. A traceability matrix to show which test cases verify which requirements
from your first homework (requirements may have been updated since
based on feedback and design decisions, in which case show the updated
requirements).

Test ID1 Test ID2 Test ID3 Test ID4
Req.1 X
Req.2 X X
Req.3 X X

8. Explain how you have addressed the feedback (for improvement if any)
provided by markers on your design. Updated versions of previous docu-
ments, if changes are made (requirements and design).

5

https://www.youtube.com/watch?v=v2F49zLLj-8
https://www.youtube.com/watch?v=QEyxgtCEWMw
https://www.youtube.com/watch?v=oCNMinACgAk
http://www.eclemma.org/installation.html
http://www.eclemma.org/installation.html
http://www.eclemma.org/userdoc/index.html
http://www.eclemma.org/userdoc/index.html
http://agile.csc.ncsu.edu/SEMaterials/tutorials/eclemma/
http://agile.csc.ncsu.edu/SEMaterials/tutorials/eclemma/

9. Include a title page with names and UUNs of team members.

10. You should also submit a text file named team.txt with only the UUNs
of the team members (one UUN on each line) as shown,
s1234567
s7891234

How to Submit. On the School of Informatics DiCE computer system, if
your project is in a folder called Application (with the source code, tests and
team.txt files) then you should submit it for Inf2C-SE homework3 using the
command:

submit inf2c-se 3 Application

6 Due Date

Homework 3 is due

Thursday, November 18th at Noon.

This homework is worth 50% of the total coursework.

Appendix: Coding Standards

Below is a list of coding conventions that are adopted from Apache Commons
Net (http://commons.apache.org/net/code-standards.html). Everything
else not specifically mentioned here should follow the official Sun Java Coding
Conventions (http://www.oracle.com/technetwork/java/codeconvtoc-136057.
html).

1. Variables and Class/Interface/Enum names should use CamelCase with
variable names starting with a lower case letter and Class/Interface/Enum
names starting with an upper case letter. Moreover names should be easily
readable, using long names over abbreviations.

2. Brackets should begin on the same line as the opening code, and end on
a new line. They should exist even for one line statements. Examples:

if (foo){

// code here

}

try{

// code here

}catch (Exception bar){

// code here

}finally{

// code here

}

6

http://commons.apache.org/net/code-standards.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

while (true){

// code here

}

3. Though it’s considered okay to include spaces inside parens, the preference
is to not include them. Both of the following are okay:

if (foo)

or

if (foo)

4. 4 space indent.NO tabs. Period. We understand that many developers
like to use tabs, but the fact of the matter is that in a distributed de-
velopment environment where diffs are sent to the mailing lists by both
developers and the version control system (which sends commit log mes-
sages), the use of tabs makes it impossible to preserve legibility.

5. Descriptive JavaDoc comments MUST exist for all methods and classes.
JavaDocs on data members is preferred and encouraged, but a standard
comment (called an implementation comment) describing the data mem-
ber on the line before it is acceptable here. For more information on how
to write JavaDocs, please see: http://www.oracle.com/technetwork/

java/javase/documentation/index-137868.html

6. Blocks of code should have inline implementation comments to help with
finding code quickly during maintenance. These should be there in ad-
dition to the JavaDoc comments above the method/class/member. For
example:

/**

* JavaDoc description here.

* @param param1 describe param1 here.

*/

public void myMethod(String param1)

{

//Process parameter

...

//Do something else non-trivial

...

//Do yet another non-trivial thing

...

}

It is generally bad practice to include these comments as trailing comments
as it makes the code harder to read.

7. Import statements must be fully qualified for clarity.

7

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

import java.util.ArrayList;

import java.util.Hashtable;

import org.apache.foo.Bar;

import org.apache.bar.Foo;

And not

import java.util.*;

import org.apache.foo.*;

import org.apache.bar.*;

8

	Overview
	CCS Implementation Notes
	Input
	Additional Hints
	Version Control

	Testing Notes
	Testing Tools
	Deliverables
	Due Date

