
Inf2C Software Engineering 2016-17

Coursework 2

Creating a software design for a
restaurant order-management system

1 Introduction

The aim of this coursework is to create and document a design for the software part of a new
restaurant order-management system. To create the design you are encouraged to experiment
with the class identification technique discussed in lecture and with the approach of using
CRC Cards you were asked to read up about.

This coursework builds on Coursework 1 on requirements capture. The follow-on Course-
work 3 will deal with implementation and test.

Please refer back to the Coursework 1 instructions for a system description. To ensure
some uniformity in the starting points for both this Coursework 2 and Coursework 3, these
instructions include appendices which sketch part of a solution to Coursework 1. Appendix A
covers the chief application domain entities, Appendix B lists the input-output devices and
Appendix C outlines a set of use cases. Your Coursework 2 design should conform to this
information.

2 Design document structure

Ultimately, what you need to produce for this coursework is a design document that combines
descriptive text with UML class and sequence diagrams. The following subsections specify
what should be included in this document. The percentages after each subsection title show
the weights of the subsections in the coursework marking scheme.

2.1 Introduction

Start your document with a few sentence description of the whole system and then refer the
reader to these instructions and the previous instructions for further general information.

1



2.2 Static model (UML class diagrams and class descriptions)

This section must contain a complete UML class model, a high-level English description of
the model, and some further documentation for each class.

2.2.1 UML class model (30%)

The class model may use more than one UML class diagram. For example, one diagram might
show just class names and the associations and other dependencies such as generalisation
dependencies between classes. Other diagrams might omit the associations, but show for
each class its attributes and operations. The operation descriptions must include types of
any parameters and the type of the return value, if relevant. Associations must include
multiplicities each end. When a multiplicity is possibly greater than one, consider adding
the UML property text ‘{ordered}’ also next to the association end. This property indicates
that it is important that instances of the class at the association end be maintained in some
order.

Leave navigation arrowheads off associations: at this abstract level of design, this infor-
mation is not needed.

Some classes will model utility concepts such as time and authorisation codes for bill
payments. Because of their simplicity, such utility classes will likely appear as the argument
or return types of operations and as attribute types, but not as classes with associations to
other classes in the class diagram.

There is no requirement for you to use a particular tool to draw your class diagrams. The
draw.io tool1 is one easy-to-use tool you might try. See post @40 on the course discussion
forum for advice on draw.io and other tools.

2.2.2 High-level description (15%)

The high-level description should include justification for the design you chose, including
specific rationale for the decisions made in the design. What alternatives did you consider
and why did you make the choices you did? How have you tried to make your design adhere
the principles of good design outlined in the lecture on software design?

It is likely that you will need to make assumptions concerning ambiguities and missing
information in the system description provided for the first coursework. For example, it
is reasonable to assume that order tickets are removed from the kitchen display when the
orders are completed. Be sure to record the assumptions you make in this section.

2.2.3 Further class documentation (15%)

To provide documention for each class beyond what is shown in the class model, provide a
brief description of the class, giving some indication of the purpose of each attribute and
operation when this is not obvious from its name in the class model. Also describe the
expected behaviour of any operation if this not obvious. For example, if the operation
involves some calculations, it could be worth explaining these calculations.

1http://draw.io

2

http://draw.io


For each operation, indicate by number which use-cases from Appendix C motivate the
inclusion of the operation. Do not include operations if they are not needed by any of these
use cases.

Indicate when a class is modelling an input and/or output device and when it can be
considered a utility class.

2.3 Dynamic models

2.3.1 UML sequence diagrams (20%)

Construct UML sequence diagrams for the following use cases from Appendix C.

• 1(d): Add menu item to order ticket

• 1(g): Pay bill

• 2(b): Indicate order item ready

To simplify your diagrams, do not include lifelines for actors, but do draw short message lines
for the messages exchanged between actors and interface objects. In the case of messages
sent from actors to objects handling input, draw a black filled-in circle at the tail end of the
message arrow. In UML, this is called a found message. Do show message names, but there
is no need to include some representation of any message arguments.

As needed, use the UML syntax for showing optional behaviour. Again, see post @40 on
the course discussion forum for further advice on draw.io and other tools that could be used
for drawing these diagrams.

2.3.2 Behaviour descriptions (20%)

UML sequence diagrams could be used to illustrate all the use cases listed in Appendix C.
However, it can be rather time consuming to draw all these diagrams. Instead, for this
coursework it is sufficient to produce textual descriptions of the objects involved and the
flows of messages for the following use cases:

• 1(b): Show menu

• 1(f): Submit order

• 2(a): Show current order

• 3(a): Cancel ready-up light

• 4(c): Remove item from menu

Describe important operation arguments carried by call messages and important operation
return values carried by reply messages.

3



3 Further information

3.1 IO interface classes

As with the Lift system covered in Tutorial 2, you should have a class for each kind of device
that handles input and/or output. The devices you need are listed in Appendix B.

3.2 Input and output events

Let us call the messages exchanged between actors (strictly-speaking, actor instances) and
objects representing interface devices events. Input events are sent by actors to interface
objects and output events are sent by interface objects to actors. These event messages are
rather special because they cross the system boundary and model interaction between the
system and actors rather than one operation invoking another wholly within the system.

Classes for devices handling input should have operations corresponding to input events:
a Button class should have a press() operation. The input event of an actor pressing a button
is modelled by the invocation of this press() operation on a Button object representing the
button. Classes for devices handling output should have operations for generating output
events: a Light class might have an switchedOn() operation. The software system generates
the output event of a particular light being switched on by invoking the switchOn() operation
on the object representing the light. Usually the output event message has a related, but not
identical name to the operation that generates it. It might describe the action just performed
at the output interface object or might be a command to whatever actor is receiving the
output event. For example, when a light is switched on, the event set out by the Light object
might be called switchedOn() or viewLightOn().

3.3 Modelling using message bursts

Create a system design with a single thread of control. Do not try to make it concurrent.
This single-threaded assumption is unrealistic, but it keeps the design and implementation
much simpler and manageable in the time available.

System activity consists of bursts of messages passed between objects, each triggered
initially by some input event, some actor instance sending a message to some object repre-
senting a device handling input. The messages in a burst in general will include some sent
to objects representing devices handling output, and so some messages will generate output
events. Each burst generally corresponds to the execution of some scenario of a use case or
some fragment of a scenario. Because of the single-threaded nature, the system does not
handle further trigger input events during a burst. Further trigger input events are only
handled after any current burst has completed.

In general, it is useful to consider bursts which involve input events after their start.
For example, in a burst corresponding to a scenario of the Pay bill use-case, a customer
might tap their bank card against a bank card reader, after being prompted to do so on
the touch-screen display of a table. Model the handling of the card-reading input event by
having a call message being sent to the card reader object and having the reply message
corresponding to this call carry some bank card details. Let’s call input events that occur
in the middle of bursts non-trigger input events.

4



We imagine bursts complete relatively quickly, sometimes in well under a second, other
times in at most a small number of minutes. The duration of a burst will be made up of
not only time when the system is executing, but also time when it is waiting for non-trigger
input events from actors.

3.4 Level of abstraction of inputs and outputs

In a real-world implementation there would be a tremendous amount of detail in the structure
and timing of the input and output events handled. Both for design purposes and to keep
the time required for this coursework reasonable, you must abstract away from most of this
detail.

Here are some examples of abstractions you are recommended to make.

1. The input event of releasing a previously pressed button can probably be ignored if
the system’s Button class does handle a press() input event. If this event is ignored,
the Button class does not need even provide a release() operation.

2. As recommended previously for Coursework 1, consider a touch-screen display as a
single single input-output device, i.e. do not create separate classes modelling the
transparent touch position sensor and the screen display underneath the touch sensor.
Create single abstract task-level input events for use case steps that conceptually in-
volve input being provided to the system, but that in practice might involve a number
of input and output events. For example, the Add menu item to order ticket use case
might involve the step of navigating through various menu pages before selecting some
item to order. We can abstract this step to some single input event which involves a
customer sending an addMenuItem() message to the touch-screen display object with,
as argument, some identifier for the menu item. To support this abstraction, the cus-
tomer needs access to an identifier for each menu item. We imagine the touch screen
display object having say a showMenu() operation capable of generating a showMenu()
output event that carries as an argument a list of all the menu items along with their
identifiers. We ignore all details about how the menu might be visually presented on
the display itself.

As touch-screen display devices are modelled at this abstract task level, distinct classes
are needed for the touch-screen displays at the tables and for the touch-screen display
in the kitchen. Your designs for these classes will share few, if any, common operations.

3. Similarly, the keyboard, mouse and monitor in the restaurant office should be a single
device with operations at the abstract level of the functions the office computer user
requires.

4. For making charges to a bank card, assume there is a class for the banking server
interface supporting a charge() operation that takes as arguments some bank card
details and an amount to charge, and returns some authorisation code for the payment.
This is an example of a single operation taking care of both an output event and a
(non-trigger) input event.

5



3.5 Abstract identifiers

As remarked in the previous section, some use cases need to have a way of referring to
components in the output of other use cases.

• When adding a menu item to an order ticket, there must be a way of referring to the
menu item observed in the display of the menu.

• When subtracting an item from an order ticket, there must be a way of referring to an
item observed in the display of the current order ticket.

• When removing a menu item from the menu, there must be a way of referring to an
item observed in the display of the current menu.

To refer to an order item or menu item, we need a name, an identifier for it. An identifier
here could be a number indicating the position of the item in a display list, some unique
short string associated with the item at some stage, or the reference (opaque address) of the
object in the system representing the item.

To simplify working with identifiers, it is recommended that you make the following
assumptions:

1. Every object has a unique ID (identifier) assigned to it when it is created.

2. The ID of an object never changes as the object is passed around the system you are
designing.

3. The type of identifiers for objects in a class Foo is FooID.

4. Implementations of output-event generating operations in interface classes can lookup
IDs of objects and add this ID information into their output events.

5. Let there be an association between classes A and B that has multiplicity 1 at the A end
and multiplicity * or similar at the B end. It is always straightforward to implement
operations for class A similar to

• getB(i : BID) : B that, when invoked on object a from class A, returns any B
object linked to a with ID i, and

• deleteB(i : BID) that, when invoked on object a from class A, deletes any link
from a to a B object with ID i.

3.6 Separating IO classes from the domain model

In graphical user interface design, the Model-View-Controller pattern and its variants and
descendants all provide advice on how to separate classes handling input and formatting
output from those modelling the application domain under consideration. This enables
multiple views onto the same underlying domain data structures and simplifies keeping
the underlying domain data and the presentations of it synchronised. More generally, this
separation of concerns results in classes with better cohesion and that are easier to understand
and maintain.

6



Please do not try implementing the MVC pattern or some similar pattern: they are not
appropriate for the level of abstraction of the design you need to create. However, in your
design, I do recommend you adopt this separation. Do not use your input/output interface
classes to model the central domain entities of menus, order tickets and the kitchen order
rack, as described in Appendix A. Rather create distinct classes for these domain entities that
stand alone, separate from the I/O classes corresponding to the devices listed in Appendix B.

4 Asking questions

Please ask questions on the course discussion forum if you are unclear about any aspect of
the system description or about what exactly you need to do. For this coursework tag your
questions using the cw2 folder. As questions and answers build up on the forum, remember
to check over the existing questions first: maybe your question has already been answered!

5 Submission

Please submit two files

1. A PDF (not a Word or Open Office document) of your design document. The document
should be named design.pdf and should include a title page with names and
UUNs of the team members.

2. a text file named team.txt with only the UUNs of the team members (one UUN on
each line) as shown,

s1234567

s7891234

How to Submit

Only one member of each coursework group should make a submission. If both
members accidentally submit, please alert the course organiser so confusion during marking
is avoided.

Ensure you are logged onto a DICE computer and are at a shell prompt in a terminal
window. Place your design.pdf requirements document and your team.txt file in the same
directory, ensure this directory is set as your current directory (i.e. cd to it), and submit
your work using the command:

submit inf2c-se 2 design.pdf team.txt

This coursework is due at

16:00 on Tuesday 8th November

The coursework is worth 30% of the total coursework mark and 12% of the overall course
mark.

7



A Application entities

1. The menu. The menu describes the items available for ordering in the restaurant. For
each item it identifies a price.

2. An order ticket. An order ticket describes the set of items that a group of customers
wish to order. Orders in general might have multiple requests for a given item, so by
each item the ticket specifies a quantity, rather than listing the item multiple times.
Each order ticket also records information on the table submitting the order and on
the time of submission.

3. The order rack. The order rack maintains the list of current order tickets, ordered by
submission time.

B Input-output devices

The input (I), output (O) and input-output (IO) devices mentioned or directly implied by
the description are as follows:

At each table in the dining area

• touchscreen display (IO)

• receipt printer (O)

• contactless card reader (I)

In kitchen:

• Large touchscreen display (IO)

At pass (pass-through area between kitchen and dining area):

• Ticket printer (O)

• Order ready-up light (O)

• Press button to cancel light (I)

At restaurant office:

• Office computer, including keyboard, mouse and display (IO)

• Internet connection (for card authorisation) (IO)

8



C Use cases

Here is a mostly-complete list of use-case titles and primary actors.

1. At table
Here the activities involved in building an order are broken down into several use
cases. In practice, when interacting with the touch-screen display, some of these use
cases might be integrated: e.g. part of the screen might show the menu, another the
current order ticket, and adding a menu item to the order might involve tapping some
button shown by the item. However, for design purposes, it is easier to separate out
each of these activities.

The step of starting an order was not made explicit in the previous instructions. How-
ever, it useful to consider the table touch-screen unit initially displaying some welcome
screen, perhaps with some instructions on what to do, and a new set of customers at
a table tap some Start order button on this screen before being able to add items to
the order.

After the Pay bill use case is executed, we can imagine the touch-screen display re-
turned to the welcome screen for the next round of customers.

(a) Start new order ticket (Customer)

(b) Show menu (Customer)

(c) Show order ticket (Customer)

(d) Add menu item to order ticket (Customer)

(e) Subtract item from order ticket (Customer)

(f) Submit order (Customer)

(g) Pay bill (Customer)
This includes viewing the bill, paying with a bank card and possibly collecting a
receipt.

2. In kitchen

(a) Show current orders (Clock)
We imagine this use-case triggered frequently, several times a minute.

(b) Indicate order item ready (Chef)

3. At pass

(a) Cancel ready-up light (Waiter)

4. In office

(a) Show menu (Head chef)

(b) Add item to menu (Head chef)

(c) Remove item from menu (Head chef)

Paul Jackson, 24th October 2016.

9


	Introduction
	Design document structure
	Introduction
	Static model (UML class diagrams and class descriptions)
	UML class model (30%)
	High-level description (15%)
	Further class documentation (15%)

	Dynamic models
	UML sequence diagrams (20%)
	Behaviour descriptions (20%)


	Further information
	IO interface classes
	Input and output events
	Modelling using message bursts
	Level of abstraction of inputs and outputs
	Abstract identifiers
	Separating IO classes from the domain model

	Asking questions
	Submission
	Application entities
	Input-output devices
	Use cases

