
Chapter IV

Introduction to C for Java programmers

Now that we have seen the native instructions that a processor can execute, we
will temporarily take a step up on the abstraction ladder and learn the C pro-
gramming language, which is widely used for systems programming. C is a high-
level language but you should be able to gain an insight1 on how its statements,
use of variables, parameter passing in functions etc. are translated to machine
instructions. It is because C ‘exposes’ the processor to the systems programmer
and because of the high-speed of its compiled programs, that the language is so
widely used for low-level programming.

This introduction to C presumes that the reader has a good grasp of Java and,
thus, puts emphasis on the differences between the two languages. These notes
are not intended to be a complete tutorial of the language, just a brief summary
of the main differences with Java. There are numerous good books and Internet
resources on C, see the course web page for some suggestions.

IV.1 Major differences with Java

Although Java borrows much of its syntax from C, they are fundamentally
different languages. The main difference is that C is not object oriented; the ob-
ject is an unknown concept in C and a C program is a collection of functions (the
equiv. of Java methods), which process data stored in global or local variables.
Program execution starts from a special function called main.

Another difference is that C programs are compiled into machine code
which can directly execute on the processor. Java compiles programs into a
special type of code (bytecode) which cannot be executed directly, but has to
be interpreted by another piece of software. The interpreter does use native ma-
chine instructions to perform the actions that each bytecode specifies; in a sense,
it translates the bytecode into machine code instructions and executes them on
the spot. Thus each time a bytecode is encountered, e.g. in a loop, it gets inter-
preted from scratch.

Memory management is another major difference between C and Java. In
Java, objects are always allocated dynamically, while in C data structures (ob-
jects without methods) can be allocated either dynamically or statically, the lat-
ter meaning that their size is fixed at compile time and cannot change when the

1The details are covered in the compilers course.

21

22 Introduction to C for Java programmers [Chapter IV

program runs. Memory space, which is dynamically allocated to a data struc-
ture, has to be released explicitly by a C program, while in Java the memory
space is reclaimed by the run-time system automatically.

Runtime errors are caught in Java and exceptions are thrown. In C there is
‘no-one’ to catch the runtime errors, so when they occur, the program behaves
strangely and, in most cases, it crashes. This combined with the fact that the C
compiler is much more liberal (it trusts that the programmer knowns what they
are doing, so it does not complain for things that may seem completely wrong
to a Java programmer), make C less ‘safe’ but a lot faster.

Finally C has the infamous pointers! Pointers are similar to Java’s references,
which are special variables that reference (or point) to another variable. Refer-
ences can be used only for objects in Java. C pointers are more general, they can
point to any type of variable and they can be used in a number of ways since
special arithmetic can be performed on them. We have actually seen pointers
in assembly programming already. Remember the base register in data transfer
instructions sw, lw? That was a pointer and we saw arithmetic being performed
on it to get the next item of an array/string. This is exactly what C pointers are
too.

IV.2 The Hello world program

Here is the Hello world program in C, hello.c:
1 #include<stdio.h>

2

3 /* This is a

4 comment */

5 int main(void)

6 { // This is a comment too

7 printf("Hello world!\n");

8 return 0;

9 }

In DICE machines the program is compiled with the command:
gcc hello.c

and run by:
./a.out

The output is:
Hello world!

The first line of the program is a C pre-processor directive, which includes a
header file, called stdio.h. This is similar to the Java import statement. Header
files contain function, constant and global variable declarations that are defined

§ IV.3] Data types and variables 23

in another .c file. In this case, the library function printf is used in the pro-
gram, so we need to include the header file that declares it. The (already com-
piled) code of printf is linked with the hello world program to create the final
executable file a.out.

The pre-processor2 is a program that runs just before the C compiler, mod-
ifies the .c file according to the directives included in the file and provides the
final source code to the C compiler. All lines starting with # are pre-processor
directives. Note that pre-processor directives do not end with ; as C statements
do. The basic functionality of the preprocessor will be discussed later.

Line 5 defines the function main, the starting point for every C program.
Its return type is int, i.e. integer, which is used is used to indicate the program
status: 0 means the program terminated correctly, while any other value means
an error occurred and the returned value specifies the type of error. Line 7 is
a function call to printf. printf is used for displaying formated text on the
screen, which in this case is a simple string. Line 8 is the last statement of the
main function, which simply returns the value 0.

IV.3 Data types and variables

Since all operators and control statements of C are familiar from Java, they
are not described here. We will see them in action later on when we will consider
some example programs.

IV.3.1 Built-in data types

The following table describes the built-in data types of C and their typical
bit sizes. Note that the size of an int is equal to the word size of the machine,
rather than fixed to 32 bits as in Java. Characters are encoded using the ASCII
code, therefore a char in C is 8 bits compared to 16 bits for Java which uses
Unicode encoding. The built-in C function sizeof() returns the size, in bytes,
of a data type (or a variable).

char 8
short 16
int 16, 32, 64 (depends on machine’s word size)
long 32 or 64
float 32
double 64

There is no boolean type in C. Instead an int is used whenever a logical
expression is required. Value 0 means false, while any other value means true.

The C data types are signed, i.e. use 2’s complement encoding, by default.

2Also available as a stand-alone program: c pp.

24 Introduction to C for Java programmers [Chapter IV

The language supports unsigned types; just add the keyword unsigned before a
data type name (char, short, int, or long).

C’s choices in data types show that the language is not that much detached
from machine code. All C built-in data types, with the possible exception of
long, can be used directly by the processor instructions. We can clearly see that
a processor’s word type is visible to the C programmer by the int data type. As
most processors do not have instructions that operate on individual bits, C uses
words (int) for performing boolean operations. Finally, direct support for un-
signed data types is provided since most processors have instructions operating
on unsigned numbers.

IV.3.2 Variables

There are two categories of variables in C, global and local. Global variables
are declared outside a function and can be accessed by any function defined in
the same source file as the variable declaration. For a global variable to be visible
to a function defined in another file, it has to be declared as an external variable
(e.g. extern int x;) in that file. In order to protect a global variable in one file
from being accessed in other files, we can declare it with a static prefix.

Local variables are declared inside a function. The compiler requires them to
be declared before any statements. Local variables are accessible only within the
function and ‘live’ for as long as the function is active, i.e. they are created when
the function is called and destroyed when the function returns. This behaviour
can be modified by declaring a local variable as static. This causes the variable
to retain its last value when the function is called again.

Recall the use of a stack for passing parameters and returning values for func-
tions in machine code. In addition to holding parameters and return values, C
uses the stack to store the (non-static) local variables of a function. This explains
why the local variables are destroyed when the function returns, because all the
values on the stack are popped.

IV.4 The preprocessor

We have already seen one of the main uses of the C preprocessor, to in-
clude header files. In the hello world program, a library header file was in-
cluded. These headers are stored in a special location in the file system and
the compiler knows where to look for them. When user header files are to be
included, the file path needs to be specified. For example, to include header.h

located in the same directory as the .c file which includes it, we use the directive
#include "header.h". Notice that the angular brackets have been replaced
with double quotes. The former imply a system header file while the latter a
user header file.

§ IV.4] The preprocessor 25

Another common use of the pre-processor is to perform text substitution.
When the directive #define NAME replacement_string appears, the pre-
processor will replace NAME with replacement_string. This is a very com-
monly used way to define constants in C.

You can also use defines with a NAME that looks like a function NAME(X).
There can be as many parameters as needed. This is called a macro;
whenever NAME(whatever) appears in the source code, it is replaced with
replacement_string and X in the replacement_string is substituted with
whatever.

Macros are used as inline functions. Because a function call is a relatively
expensive operation (push values onto the stack, jump and link, pop values out)
for simple operations it is faster to actually replace the function call with the
expanded code in its declaration. Because when C was developed the compilers
were not smart enough to do this automatically, pre-processor macros were used
instead and are still commonplace today.

Finally the third common use of the C pre-processor is to perform condi-
tional compilation, i.e. selectively exclude source code from being compiled.
When developing a program we usually include code to hold and print out in-
formation useful for debugging. A common trick is to use a boolean variable
called debug and at key program points, check if debug is true and print out
the information. This is clearly inefficient because the compiled code is larger
and slower as it has to check debug frequently. In reality debug does not change
after the program has started, so it is known at compile time. Therefore the
preprocessor can be used to hide the debugging-related lines of code before the
compiler actually sees them.

The following program demonstrates the use of the above features of the
pre-processor:
// #define DEBUG

#define N 50

#define MIN(A, B) (A < B ? A : B)

int func(int a[])

{

int i;

#ifdef DEBUG

printf("Entering function: func\n");

#endif

for (i = 1; i < N; i++)

t = MIN(a[i-1], a[i]);

return t;

}

26 Introduction to C for Java programmers [Chapter IV

Run cpp on the above to see what you get after the preprocessor does its job.
Then un-comment the first line and do it again.

IV.5 Complex/composite data structures

IV.5.1 Structures and unions

Structures are composite data structures, similar to objects without meth-Structures

ods. Here’s how a point structure may be defined and two variables of this type
declared:
struct point {

int x, y;

} p1;

struct point p2;

Anonymous structures can also be defined, but no more variables of this
type can be declared afterwards:

struct {

struct point c;

unsigned int rad;

} circ1, circ2;

// No way to declare another variable of the same struct now

In an expression the component data of a structure can be accessed using the
structure member operator, “.”

p1.x = 2;

dist_x = cir1.c.x - circ2.c.x;

Unions are declared and used in expressions similarly to structures, but theyUnions

are essentially a way of interpreting the same memory space as two or more,
different data types. For example the geomObject union can store either one
point or one circle:

union geomObject {

struct point;

struct circle; // assuming circle struct above is named

} g_obj;

Example of using unions in expressions:

§ IV.5] Complex/composite data structures 27

g_obj.point.x = 1;

g_obj.circle.c.y = 9; // overwrites the point field

Structures, once defined can be used exactly as built-in types. For example,
they can be used as arguments or return types from functions and the whole
structure will be copied in this case. This is different to Java where only refer-
ences to objects are passed to (or returned from) methods rather than full copies
of the objects themselves.

New types can be defined in C using the typedef statement. For example to Type definitions

define a new type circle:

typedef struct {

struct point c;

unsigned int rad;

} circle;

circle circ1, circ2;

IV.5.2 Arrays

Arrays in C are significantly different to Java’s arrays, although they ‘look’
similar in syntax. An array in C is just a contiguous block of memory containing
a fixed number of data items of the same type. The size cannot change at run time
and must be clearly defined at compile time. Here are some array declarations
in C:

circle c_array[3]; // Array of 3 circle structures.

int arrayName[5][4]; // 2-D array

int n[] = {3, 4, 5, 6}; // Array with initialiser

Although the last declaration might seem to define a variable size array, the
compiler fixes the size according to the number of elements in the initialiser.
C can have data structures that can change dynamically, but this is done using
pointers. As we will see shortly, pointers can also be used as arrays.

Other major differences with Java are that array bounds are not checked and
functions are not allowed to return arrays (but arrays are accepted as function
parameters). Whenever we need to return an array, we can do the same using
pointers.

28 Introduction to C for Java programmers [Chapter IV

IV.5.2.1 Strings

Strings in C are arrays of characters (type char) with the, sometimes implicit,
convention that the end of the string is marked with a special character ‘\0‘,
called the null character which has an ASCII value of 0. Therefore the string
declaration:
char string[10];

contains up to 9 characters because one space is taken up by the ‘\0‘.
The way string literals, like "this is a string", are used can be con-

fusing to the newcomer to C. Assignment of string literals to character ar-
rays using the common assignment operator, ’=’, is not permitted and equal-
ity comparisons (’==’) do not work as might be expected. Library functions
strcpy(dest, source) and strcmp(s1, s2), defined in string.h, must be
used instead. However, when a string is being declared, assignment using a string
literal is allowed:
#include <stdio.h>

#include <string.h>

char str[10] = "string";

char str1[] = "another string!";

int main()

{

char s[10] = "me", s1[11] = "me";

//s = "Aris"; // The compiler does not accept this

if (s == "me") // This is false!!!

printf("s is equal to \"me\"\n");

if (s == s1) // false too: s, s1 are different arrays

printf("s is equal to s1\n");

if (strcmp(s, s1) == 0) // strcmp ret. 0 when strings match

printf("strcmp: s is equal to s1\n");

printf("%s\n", s);

}

IV.6 Pointers and dynamic memory allocation

From what we have seen so far, one might think that C does not provide
much support for dynamic data structures. The capability is actually there but

§ IV.6] Pointers and dynamic memory allocation 29

one has to use pointers to use it.
We have already seen what a pointer is from a machine language point of

view. A C pointer is essentially the same, a variable holding the memory ad-
dress of a data type, but its use in a high-level language needs some effort to
familiarise with. A pointer variable is declared as:
type *name; where type can be anything from built-in data types to structures;
even pointers to pointers and pointers to functions (the syntax is slightly dif-
ferent) are allowed. From the above declaration we see that C pointers need to
know what type of data they point to.

Consider the following C program:
1 #include <stdio.h>

2 int main()

3 {

4 int i;

5 int *p; // p is a pointer to an int

6

7 p = &i; // p get the address of i;

8 *p = 5; // assign 5 to whatever p points to.

9 printf("i = %d, p points to %d", i, *p);

10 }

This code introduces two operators that have to do with pointers. The &

operator returns the address of a variable which can then be assigned to a pointer.
The dereferencing operator, *, is used to access the data that a pointer points to.
So in the above program, after line 6, *p is equivalent to i both at the left side of
an assignment (line 8) and at the right (line 9).

In C, like Java, function arguments are passed by value. This means that Pointers as function

argumentsa function gets a copy of the values of its arguments rather than the original
arguments themselves. The return value is also copied back to a variable (or
used in an expression, etc.) when the function returns.

But in many cases we want a function to change the values of the original
arguments; then we have to use pointers. When a function has a pointer to the
original data it can manipulate the data directly. Note that the pointers them-
selves are copied by value! But this is OK, pointers are just memory addresses,
so it is this address that is useful, not the pointer variable. The most common
example to demonstrate the use of pointers as function arguments is the code
for the swap function which exchanges the values of its two arguments.

#include <stdio.h>

void swap_wrong(int a, int b)

30 Introduction to C for Java programmers [Chapter IV

{

int t;

t = a;

a = b;

b = t;

}

void swap_right(int *a, int *b)

{

int t;

t = *a;

*a = *b;

*b = t;

}

int main()

{

int x = 3, y = 5;

swap_wrong(x, y);

printf("x = %d y = %d\n", x, y);

swap_right(&x, &y); // must use the address of operator here

printf("x = %d y = %d\n", x, y);

}

When a pointer, p, points to a structure, we use (*p).rad to access a struc-pointers and structures

ture member. As this is a very common operation3, C has a structure pointer
operator ’->’, so the previous expression can be written as p->rad.

IV.6.1 Pointer arithmetic and arrays

Up to now we have seen pointers that point to a single int, struct, etc. But
pointers are very useful when they point to arrays. Consider the following lines:
int a[10];

int *p;

p = &a[0];

C allows arithmetic on pointers, so when p is assigned to point to the first
element of the array, p+1 points to a[1] and, in general, p+i points to a[i].

3Forgetting the brackets is a common mistake; * p.rad means * (p.rad).

§ IV.6] Pointers and dynamic memory allocation 31

Obviously *(p+i) is the same as a[i]; the compiler even accepts pointer arith-
metic with array names, so a[i] is the same as *(a+i). Note that the address
of a[1] is actually &a[0] + 4, assuming 32-bit integers. The compiler converts
p+i to the correct address because it knows what type of data p points to from
its declaration.

The result of a pointer arithmetic expression can be stored to a pointer vari-
able. For example, p++ makes p point to the next element and p = a+i makes p
point to the i-th element of the array a. The expression *p++ is also very com-
monly encountered in C programs. It means: use the value pointed to by p and
then increment p so that it points to the next element. Likewise, *++p first in-
crements and then accesses the data. To increment the, say integer, pointed to
by p, use (*p)++. What does (*++p)++ do?

Special value NULL, a pre-processor defined constant, is used to show that a
pointer is not pointing to anything. Traditionally NULL is 0, so in many pro-
grams you find expressions like: if (!p) ... which means if (p ==NULL) ... The
above implies that comparisons with pointers are allowed in C, and are used, for
example, when one pointer points at the end of an array and another pointer
traverses the array, to determine when to stop.

IV.6.2 Dynamic memory allocation

So we can do all this fancy arithmetic with pointers, but for what purpose?
Apart from being facilitating access to variables by reference from within a func-
tion, we haven’t seen any extra functionality offered by pointers. Pointers be-
come really useful in C when combined with dynamic memory allocation, i.e.
acquiring memory space for a data structure that we do not know its size before
the program is actually executing. For this purpose C provides the library func-
tion malloc(s) which returns a pointer to a newly allocated memory area of
size s. stdlib.h must be included before malloc can be used. In order to make
source code re-usable in other architectures, C provides the sizeof operator to
determine the size of a data type. For example to allocate space for n integers
one can use:
int *p;

if ((p = malloc(n*sizeof(int))) == NULL) {

// Error

}

Notice how an if statement is used to detect the rare case when it is not
possible to allocate the space required. Also notice how an assignment can be
done inside an if statement.

Memory space can be released when it is not needed by calling the library

32 Introduction to C for Java programmers [Chapter IV

function free. It is always a good idea to release unused memory, even when
modern computers have gigabytes of it.

IV.6.3 Pointers to pointers

Since a pointer is just a variable, we could make another pointer point to it!
Would that be of any use? Most certainly yes!

Consider the case of an array of strings. It can be declared as:
char *strTable[10];

As you can see, we would have to know in advance the (maximum) table size.
The only way to have both the string size and the table size be determined (or
change) at run-time is to use a pointer to a pointer of type char. The declaration
of this is:

char **strTable;

Notice that following the above declaration there is no reserved space for the
strings nor the table itself. To allocate space we would use a piece of C code like
the following:

strTable = malloc(n*sizeof(char *));

for (i=0; i < n; i++) {

// s gets a string of length l

*(strTable+i) = malloc(l*sizeof(char));

strcpy(strTable[i], s);

}

The first call to malloc allocates space for a table of n strings. Then, space
is allocated for each of the strings individually. Notice the use of pointer arith-
metic. strTable+i points to the i-th entry of the table; to get the pointer to the
first character of the string, we need to dereference it, *(strTable+i). To get a
specific character, say character j (remember counting starts from 0) of the i-th
string, we would write: *(*(strTable+i)+j) or strTable[i][j].

