Last lecture

- Moore’s law
- Types of computer systems
- Computer components
- Computer system stack
Announcements

- Tutorials start next week

- If you need to change your tutorial group, contact the ITO

- Piazza (online discussion forum) is up and active – USE IT!
Lecture 2: Data Representation

- The way in which data is represented in computer hardware affects
 - complexity of circuits
 - cost
 - speed
 - reliability

- Must consider how to design hardware for
 - Storing data: memories
 - Manipulating data: processing (e.g., adders, multipliers)
Lecture outline

- The bit – atomic unit of data
- Representing numbers
 - Integers
 - Floating point
- Representing text
The bit

- Information represented as sequences of symbols
 - Humans use letters, numerals, punctuation, whitespace
 - Computers use just 0s and 1s, *bits*

- *Bit* – an acronym for Binary digiT

- Advantages: easy to do computation, very reliable, simple & reusable circuits

- Disadvantages: little information per bit → must use many bits. $512 \equiv 1\ 0000\ 0000$, ‘A’ $\equiv 0100\ 0001$
Natural numbers representation

- Non-negative (unsigned) integers are very simple to represent in binary

```
<table>
<thead>
<tr>
<th>Bit position</th>
<th>Binary:</th>
<th>Decimal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-1</td>
<td></td>
<td>(\times 2^{n-1}) +</td>
</tr>
<tr>
<td>n-2</td>
<td></td>
<td>(\times 2^{n-2}) +</td>
</tr>
<tr>
<td>...</td>
<td>(\cdots)</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(\times 2^1) +</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>(\times 2^0)</td>
</tr>
</tbody>
</table>
```

Most significant bit (MSB) and Least significant bit (LSB)
Basic operations

- Addition, subtraction with unsigned binary numbers is easy:

\[
\begin{array}{c}
1111 \\
01101 \\
+01011 \\
\hline
11000
\end{array}
\] 13

\[
\begin{array}{c}
0010 \\
01101 \\
-01011 \\
\hline
00010
\end{array}
\] 2
Fixed bit-length arithmetic

- Hardware cannot handle infinitely long bit sequences
- We end up with a few fixed-size data types
 - **Byte**: always 8 bits
 - **Word**: the typical unit of data on which a processor operates (32 or 64 bits most common today)
- **Overflow** happens when a result does not fit
 - Numbers wrap-around when they become too large
 - Arithmetic is modulo 2^N, where $N=$ number of bits
What about negative numbers?

- **Sign-magnitude representation:**
 - Use 1st bit (MSB) as the sign
 - 1 → negative, 0 → positive

 0010 \equiv 2 \quad 1010 \equiv -2

- Complicates addition and subtraction
 - The actual operation depends on the sign

- Has positive and negative zero
 - 0000 \equiv 0 \quad 1000 \equiv -0

Better way: **2’s complement representation**
Two’s complement: the intuition

- Want: $X + (-X) = 0$

- Insight: don’t need the full sum to be 0
 - Only need the bits that can be represented within a computer’s fixed width to be 0

- Approach:
 - Represent the negation of X as 2^N-X
 - Recall: largest number represented with N bits: 2^N-1
 - Then: $X + (-X) = X + (2^N-X) = 2^N$
 - Note that N lowest bits are all 0
Two’s complement: example

Given:

• 3-bit fixed width (N=3)
• \(X = 2\) (decimal) \(\rightarrow\) 010 (binary)

\[2^N = 8\ (\text{dec}) \rightarrow 1000\ (\text{bin})\]

\[-X = 2^N - X = 8 - 2 = 6\ (\text{dec}) \rightarrow 110\ (\text{bin})\]

Check:

\[X + (-X) = 010 + 110 = 1000\]
Efficiently computing 2’s complement

EASY!

“Flip the bits and add 1”

Example:

\[X = 0\ 1\ 0 \text{ (bin)} \rightarrow 2 \text{ (dec)} \]

Flip the bits: 1 0 1

Add 1: 1 1 0 \text{ (bin)} \rightarrow -X
2’s complement details

- The MSB is the sign
- \(A - B = A + \) 2’s complement of \(B \)
- Arithmetic operations do not depend on the operands’ signs
- Range is asymmetric: \(-2^{n-1}\) to \(2^{n-1}-1\)
- There are two kinds of overflows:
 - Positive overflow produces a negative number
 - Negative underflow produces a positive number
Converting between data types

- Converting a 2’s complement number from a smaller to a larger representation is done by sign extension.

Example: from byte to short (16 bits):

\[
\begin{align*}
2 &= 00000010 \Rightarrow 0000000000000010 \\
-2 &= 11111110 \Rightarrow 1111111111111110
\end{align*}
\]

\[
\begin{align*}
2 &= 00000010 \Rightarrow 0000000000000010 \\
-2 &= 11111110 \Rightarrow 1111111111111110
\end{align*}
\]

(bit) (short) (byte) (short)
Shifting

- Shifting: move the bits of a data type left or right
 - Data bits falling off the edge are lost
- For left shifts, 0s fill in the empty bit places
- For right shifts, two options:
 - Fill with 0 (logical shift): for non-numerical data
 - Fill with MSB (arithmetic shift): for 2’s complement numbers
- Shift left by \(n \) is equivalent to multiplying by \(2^n \)
- Shift right by \(n \) is equivalent to dividing by \(2^n \) and rounding towards \(-\infty\)
- Example
 6 = 0 0 0 0 0 1 1 0 >> 2 \(\rightarrow \) 0 0 0 0 0 0 0 1 = 1
 -6 = 1 1 1 1 1 0 1 0 >> 2 \(\rightarrow \) 1 1 1 1 1 1 1 0 = -2
Hexadecimal notation

- Binary numbers (and other binary-encoded information) are too long and tedious for us to use
- Solution: use a more compact encoding
 - Hexadecimal (base 16) is most common
- Hex digits: 0-9 and A-F
 - $A=10_{\text{dec}}$, $B=11$, …, $F=15$
- Conversion to/from binary is very easy:
 Every 4 bits correspond to 1 hex digit:

 $\underbrace{1\ 1\ 1\ 1\ 1\ 0\ 0\ 0}_F(15) = 0xF8$

Hex is just a convenience for humans
Computers use the binary form
Real numbers - floating point

- Java’s `float` (32 bits)
 `double` (64 bits)

- Binary representation:
 - example 0.75 in base 10 ⇒ 0.11 in base 2

\[
(2^{-1} + 2^{-2} = 0.5 + 0.25 = 0.75)
\]
Real numbers - floating point

- Java’s `float` (32 bits)
 `double` (64 bits)

- Binary representation:
 - example 0.75 in base 10 ⇒ 0.11 in base 2

\[
0.11 \Rightarrow 1.1 \times 2^{-1}
\]

- Normalization:

(2^{-1} + 2^{-2} = 0.5 + 0.25 = 0.75)

Mantissa (aka significand) exponent

implicit (always 1)
Why normalize?

Three reasons:

1. Simplifies machine representation
 (don’t need to represent the fraction separator)

2. Simplifies comparisons
 – Which one is bigger: 0.0000101 or 0.000001 ?

3. Is more compact for very small/large numbers
 – E.g., $0.0000000000000001 = 1.0 \times 2^{-16}$
 or can be made more compact (by rounding fraction)
Floating point conversion example #1

Convert the number 25 to floating point with normalization

1) 25 in base 10 \Rightarrow 11001 in base 2

2) 11001 to normalized floating point \Rightarrow 1.1001\times24

Understand that:
- The number is normalized
- 1001 is mantissa (aka significand)
- 4 is exponent
- sign is “+” (implicit here)
IEEE 754 Floating Point standard

- Need a standard to represent and compute with fixed-width floats
- 32 bit representation:

\[(0.75)_{10} \rightarrow (0.11)_2 \rightarrow (1.1 \times 2^{-1})_2\]

\[\rightarrow s = 0, m = 1, \exp = 126\]

\[\rightarrow 0 01111110 10000000000000000000000000\]

Note: representation does NOT use 2’s complement
IEEE 754 Floating Point standard

- Need a standard to represent and compute with fixed-width floats
- 32 bit representation:

\[(-1)^s \times (1.m) \times 2^{exp-127} \text{ Bias} \]

\[\text{e.g.,} \]
\[(0.75)_{10} \rightarrow (0.11)_2 \rightarrow (1.1x2^{-1})_2 \]
\[\rightarrow s = 0, m = 1, \exp = 126 \]
\[\rightarrow 0 01111110 10000000000000000000000000000000 \]

- 64 bit representation:
 - exponent = 11 bits; mantissa= 52 bits
IEEE 754 Floating Point standard

- Why bias?
 - Avoids the complexity of +/- exponents
 - Simplifies relative ordering of FP numbers

- Note: processors usually have specialized floating point units to perform FP arithmetic
Example: Convert 23.5 (decimal) to IEEE 754 floating point

Start: 23 in base 10 \Rightarrow 10111 in base 2
Example: Convert 23.5 (decimal) to IEEE 754 floating point

Start: 23 in base 10 ⇒ 10111 in base 2

1) 23.5 in base 10 ⇒ 10111.1 in base 2

2) 10111.1 to normalized floating point ⇒ 1.01111x2⁴

3) S = 0

M = 01111 is mantissa (remember: 1. is implicit)

Exp = 4+127 = 131 in base 10 ⇒ 1000 0011 in base 2

Pad with 0s
IEEE 754 Floating Point notation

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Mantissa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-254</td>
<td>Anything</td>
<td>Floating point number</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>Infinity (signed)</td>
</tr>
<tr>
<td>255</td>
<td>Non-zero</td>
<td>Not-a-number (NaN)</td>
</tr>
</tbody>
</table>

32-bit representation
Representing characters

- Characters need to be encoded in binary too
- Operations on characters have simpler requirements than on numbers, so the encoding choice is not crucial
- Most common representation is ASCII
 - Each character is held in a byte
 - E.g. ‘0’ is 0x30, ‘A’ is 0x41, ‘a’ is 0x61
- Java uses Unicode which can encode characters from many (all?) languages
 - 16 bits per character required
Representing strings

- Words, sentences, etc. are just *strings* of characters

- How is the end of a string identified?
 - No common standard exists. Different programming languages use different encodings
 - In C: a special character, encoded as 0x00
 - Also called NULL character
 - In Java: string length is kept with the string itself
 - string is an object and length is one of its member variables
Summary

- Computers use binary representation
- Signed numbers: sign-magnitude vs 2’s complement
- Floating point
- Characters and strings