Chapter IX
I/O controllers and I/O devices

I/O devices are the pieces of hardware, often outside the computer cabinet,
which perform input and output. Examples of I/O devices (typical interface
formats in brackets) are: modems and other serial devices (RS232 serial inter-
face), printers (parallel port interface), disk drives (IDE, SCSI), video monitors
(analogue video signal), and local area network cables and transceivers (high fre-
quency serial signal).

I/O controllers are the pieces of digital electronics, inside the computer cab-
inet, which transform commands from the processor into the interface signals

understood by the I/O device.

IX.1 Example I/O controller - UART

The I/O controller used to connect a serial device to a computer is variously
known as a UART (Universal Asynchronous Receiver Transmitter). The I/O
device is connected to this I/O controller via a serial port interface, which con-
sists of a minimum of three wires: Tx Data, Rx Data and a Ground wire. Data
is transmitted one character (7 or 8 bits) at a time, and each character is transmit-
ted serially along the Tx Data wire (to the device) or the Rx Data wire (from
the device). When no character is on the wire, the wire is at the logic 1 voltage.
Characters are transmitted as (typically - there are variants) 10 or 11 bits of data,
starting with a start bit, value O, then seven or eight bits of data for the character
(least significant bit first), followed by a parity bit, followed by a stop bit, value
1. The parity bit is chosen so there is always an odd (or as a settable option,
even) number of 1 bits in the data bits and parity bit together. So the receiver
can detect a transmission error which flips the logic value of a single bit within
the data or parity bits.

The UART I/O controller translates between this serial data format, and
the format in which a processor handles characters, i.e. as a byte, transferred
in parallel down a set of eight wires. Shift registers are employed to convert
between the serial and parallel data representations. An abstract block diagram
of a UART may look like figure IX. 1!

Received characters may be accessed by the CPU from the Rx data register,
and to transmit a character, the CPU loads it into the Tx data register. The
receiver status signal indicates that a character has arrived, and the transmitter
status signal that the character previously loaded into the Tx data register has

65

66 I/O controllers and I/O devices [Chapter IX

RECEIVER 1 1 SERIAL

STATUS </ — SHIFT REGISTER —— DATA
IN

— 8
READ
CONTROL

DATA

(<]

Rx DATA

TO/FROM REGISTER RECEIVER FROM/TO
PROCESSOR TX DATA TRANSMITTER TERMINAL
REGISTER
DATA
WRITE 8
CONTROL B
TRANSMITTER 1 1 SERIAL

STATUS 7
SHIFT REGISTER DATA

Figure IX.1: UART block diagram.

been completely transmitted.

IX.2 Interconnection of CPU and I/O controllers

It would be possible to build the Tx and Rx data registers of the UART into
the CPU itself. Data could then be moved directly between these registers and
the status wires could be tested by inventing new conditional branch instruc-
tions. This is the way the earliest computers performed I/O transfers, but it is
obviously not suitable for a computer with a range of I/O controllers, especially
if the number and type of I/O controllers is to be flexible.

An improvement is therefore to keep the I/O controller registers outside the
CPU, and connect the two via an 1/O bus, which is very similar to the CPU -
memory bus. The I/O bus has three parts: the data bus (typically eight bits
wide), the control bus (READ and WRITE signals) and an address bus, which
indicates which register in which of the I/O controllers the CPU is accessing.
Each I/O controller register is allocated a unique address. I/O transfers are then
achieved using special I/O load and store instructions which move a data byte
between a general purpose CPU register and an I/O controller register.

This deals with the data transfers; what about the status signals? It is not fea-
sible to have separate status wires from many I/O controllers all feeding directly
into the CPU for testing, so the status signals are fed into a status register within
the I/O controller itself. That register can be accessed by the CPU in the same
way as the data registers in the I/O controller and is allocated its own address

§ IX.2] Interconnection of CPU and I/O controllers 67

1/0 BUS FROM PROCESSOR

READ 0 ——=| 7
8 Rx DATA
REGISTER
1o Receiver status bit
=7 . .
READ1——=1 | T — Transmitter status bit
L O |
8 0 STATUS
0 | REGISTER
L O |
L O |
LO Jo
WRITE O ——=| 7
8 Tx DATA
REGISTER
2 8 8
L _Jo
READ, ADDRESS DATA UART

WRITE

Figure IX.2: UART with status register, connected to an I/O bus.

on the I/O bus.

IX.2.1 Memory-Mapped I/O

The I/O bus and the memory bus of a CPU are very similar. Almost all
modern CPU designs dispense with the I/O bus, and use the memory bus to
access the I/O controller registers. This is done by allocating a portion of the
memory address space to I/O controllers (and obviously putting no memory in
that portion).

As before, each register of each I/O controller will be allocated a unique
address. However, it is no longer necessary to have special I/O load and store
instructions, as the I/O controller registers look, to the CPU, exactly like mem-
ory locations, so can be accessed using the ordinary memory load and store
instructions.

IX.2.2 Polling and interrupts

The mechanisms described above enable the CPU to access data in registers
in I/O controllers and, by reading an I/O controller status register, the CPU
can find out when the I/O controller is ready for more data to be transferred.
In practice it is not feasible for the CPU in a general purpose computer to keep
scanning the status registers of all the I/O controllers to see if they wish to have
data transferred — it would require every user program to call the operating
system at regular short intervals to do the scan. This regular scanning of sta-

68 I/O controllers and I/O devices [Chapter IX

tus registers is called polling, and it is normally only found in single-function
computers in embedded control applications inside cars, appliances etc.

In general purpose computers, an I/O controller generates an interrupt when
it is ready for data transfer, via an interrupt request signal from the I/O con-
troller to the CPU. When the CPU sees the interrupt request signal, the oper-
ating system exception handler is called, and can identity which I/O controller
interrupted. It can then look in that I/O controller’s status register to ascertain
the exact cause of the interrupt, and can deal with the requested data transfer.

IX.3 Disks and Disk Controllers

Floppy and hard disk surfaces are divided into concentric tracks (hundreds
per surface on a hard disk), and each track is divided into sectors (typically a few
tens per track). A sector holds a fixed number of bytes, variously 512, 1024 etc.
for different disk formats.

The access time of a disk is the time it takes the head to get into position
above the required sector, and is made up of two parts, the track seek time (the
time it takes to move the head to the required track), plus the rotational latency
to get to the required sector. Data transfer rates are largely determined by how
closely the bits can be packed on the disk surface (the recording density).

All disk drives require controllers, to interface the disk head movement and
data read/write electronics to something the CPU can understand. The two
common standards for CPU communication with these controllers are EIDE,
and SCSI. An EIDE bus is very similar in structure to the processor’s own mem-
ory bus so very little hardware is required to interface the processor to the EIDE
bus. In the case of SCSI, a SCSI bus controller is needed, through which the
CPU operates the SCSI bus.

The CPU interface of a floppy or EIDE disk controller is the usual bank
of registers mapped into the CPU I/O bus address space, or memory-mapped.
The individual functions carried out by the disk controller for the CPU are
quite complex, and one register, written by the CPU, is usually designated the
command register — the value written to this register determines which complex
function the controller carries out next.

Typical commands might be:

Seek n Move the head to track n.

Read Sector m Wait for sector m to rotate under head, then read the data from
it.

Write Sector m Wait for sector m, then write new data into it.

§ IX.4] Direct Memory Access 69

Format Track Initialise the track, writing the sector marks and identifying in-
formation.

IX.3.1 Using a disk controller

If the CPU wishes to read the data from a particular sector (the directory
system provides the mapping from parts of files to physical disk sectors), it must
first issue a seek command to the required track. Tens or hundreds of ms later,
the seek will complete, and the disk controller will interrupt the CPU. Next
the CPU issues a read sector command for the required sector. Again there may
be a long delay for the rotational latency, so the controller will interrupt again
when the head is above the requested sector. Now the data must be transferred,
typically one 16-bit word at a time, and at hard disk rates (i.e. 20Mbit/sec or
more).

Dealing with an interrupt takes a considerable amount of time making it im-
possible to synchronise the disk data transfer by an interrupt for each word to
be transferred. An alternative is for the OS to sit in a loop, polling the disk con-
troller status register to find out when each word is ready. However, that would
require the computer to do nothing else while the operating system transfers a
complete sector from disk.

Ideally, what we want is to relieve the CPU entirely of the task of moving
the data between memory and the disk controller, and this can be done if we
arrange for the disk controller to be able to access the memory directly itself.

IX.4 Direct Memory Access

The disk controller needs to be able to transfer a block of words to or from
memory (for read sector and write sector commands respectively). For this,
additional hardware is needed, called a direct memory access (DMA) controller.

The DMA controller includes an address register, holding the address in
memory of the next word to be read/written, a data register, through which
data is transferred from/to memory, and a length register holding the number
of words still to be transferred. To read a word from memory, the DMA con-
troller outputs the contents of the address register onto the memory address bus,
and asserts the read signal in the memory control bus. The memory responds
with the data word, which the DMA controller copies into the data register,
to be sent as a serial data stream to the disk. The address register is then in-
cremented, ready for the next word, and the length register decremented. The
DMA operation is complete when the length register reaches zero. Writing to
memory is similar, except that the DMA controller outputs the data words onto
the memory data bus.

70 I/O controllers and I/O devices [Chapter IX

Data
Address

CPU
Control

Bus Bus

Request Grant
Address
register
Data Tolfrom
register disk

Length register

DISK CONTROLLER

MEMORY

To read or write a sector, the CPU must first issue the command to seek to
the correct track, as before, then write initial values into the DMA controller
address register (i.e. a pointer to the data buffer in memory) and the length reg-
ister, and then issue the disk command read sector m or write sector m. The disk
operation now proceeds without further CPU intervention — once the head is
above the required sector, the data is transferred between the disk and the mem-
ory buffer by the DMA controller, and the CPU is interrupted only when the
operation is complete.

We now have two devices, the CPU and the disk DMA controller, both con-
trolling the memory bus — how do we ensure that they don’t both try to use
the bus at the same time? This is achieved with a circuit in the CPU called the
bus arbiter, which arbitrates between requests by the CPU to use the memory
bus, and requests by the DMA controller. The DMA controller is connected to
the arbiter by two wires, a signal to the arbiter called bus request and an acknowl-
edgment signal from the arbiter called bus grant.

