Lecture 7: Logic design

" Binary digital logic circuits:
— Two voltage levels (ground and supply voltage) for 0 and 1
— Built from transistors used as on/off switches
— Analog circuits not very suitable for generic computing
— Digital logic with more than two states is not practical

Combinational logic: output depends only on the current inputs
(no memory of past inputs)

input : " combinational : ” output

logic

Sequential logic: output depends on the current inputs as well as
(some) previous inputs

Inf2C Computer Systems - 2013-2014

Combinational logic circuits

= Inverter (or NOT gate): 1 input and 1 output

. . . 7
invert the input s1gnal

IN | OUT

input 4{>070utput 0| 1 OUT = IN

1 0

= AND gate: minimum 2 inputs and 1 output

“output 1 only if both inputs are 1"

)7 OUT

IN, | IN, | OUT

OUT = 1IN, . IN,

_— O O
_O = O
- O O

Inf2C Computer Systems - 2013-2014

Combinational logic circuits

" OR gate:

é . . . 14/
— output 1 1f at least one input 1s 1

IN, | IN, | OUT
IN, —S
IN, —

= NAND gate:
— “output 1 if both inputs are not 1” (NOT AND)

OUT = IN, + IN,

—_ O O
—_O = O
Y)

IN, | IN, | OUT

OUT = 1N, . IN,

IN, —
!)of ouT

Inf2C Computer Systems - 2013-2014

—_— -0 O
_O = O
S = =

Combinational logic circuits

= NOR gate:
“output 1 if no inputis 1~ (NOT OR)
IN, | IN, | OUT
IN o ! OUT =IN, + IN
') o— our 0 | 1 0 SR
IN, —z 10| o
1 | 1 0
" Multiple-input gates:
AND
IN, — IN, —
: >7 OUT 1} OUT
IN — IN, —
., OUT =1if all IN=1 OUT =1 if any IN.=1

Inf2C Computer Systems - 2013-2014

Multiplexer

= Multiplexer: a circuit for selecting one of many inputs

A z z = {1.0’ i e=0
i, — i, if c=1
C
c | 1, 1 z
0 0 0 0
0 0 1 0 I e e
Z = C.d,.1, + c.1,.1, + Cc.1,.1, + C.1,.1
0 1 0 1 - 0 1_ 0™ ~ 0" 0"
0| 1|1 | 1 = c.iy.(i; +iy) + c.(iy + ig)-i;
Lpojofo = Ty + ¢
1 0 1 1
1 1 0 0 “sum of products form”
1 1 1 1

Inf2C Computer Systems - 2013-2014

A multiplexer implementation

= Sum of products form: i;.c +ij.c

— Can be implemented with 1 inverter, 2 AND gates and 1 OR

gate: 1 —_}_

mpss

e

" Sum of products is not practical for circuits with large

number of inputs (n)

— The number of possible products

Inf2C Computer Systems - 20

can be proportional to 2°

13-2014

Arithmetic circuits

= 32 _bit adder

2 N\
a31'—> — s, 04 inputs — too complex for sum of
by — 7 °» roducts
b3~ P
= Full adder:
a b c |carry | sum
a —™\ ol oo o | o
S —carry(-out) 0 0 1 0 1
— sum
b 0 | 1] 0 0 1
|c (carry-in) 0 1 1 1 0
1 0 0 0 1
sum = a.b.c + a.b.c + a.b.c + a.b.c ! 0 ! 1 0
1 1 0 1 0
carty = b.c + a.c + a.b 1 1 1 1 1

Inf2C Computer Systems - 2013-2014

Ripple carry adder

= 32_bit adder: chain of 32 full adders

azby c3 b ¢ ay by ¢
| 1] }] L]
1 bit

full-adder ¢ °

Vo bl b
S32 83 $1 So

— Carry bits ¢, are computed in sequence ¢, C,, ... , Cs,
(where c;, = s3,), as ¢, depends on ¢, ,

— Since sum bits s. also depend on c, they too are
computed in sequence

Inf2C Computer Systems - 2013-2014

Propagation Delays

" Propagation delay = time delay between input signal
change and output signal change at the other end

= Delay depends on technology (transistor, wire
capacitance, etc.) and number of gates driven by the
oate’ s output (fan out)

" c.g.: Sum of products circuits: 3 gate delays
(inverter, AND, OR) — very fast!

" c.g.: 32-bit ripple carry adder: 65 gate delays
(1 AND + 1 OR for each ot 31 carries to propagate; 1
inverter + 1 AND + 1 OR for S;,) — slow

Inf2C Computer Systems - 2013-2014

Sequential logic circuits

input ~ output

| combinational
logic

feedback I sequential
: logic

= Output depends on current inputs as well as past
inputs
— The circuit has memory

= Sequences of inputs generate sequences of
4@ outputs = scquential logic

Inf2C Computer Systems - 2013-2014 10

Sequential logic circuits

= For a fixed input and 7 feedback signals, the circuit can
have up to 2” stable states
— E.g. n=1 — one state if feedback signal = 0

one state if feedback signal =1

= Example: SR latch S ——z Q
— Inputs: R, S 9
— Feedback: q, g q
eedback: g, q . __z Q
— Output: Q

Inf2C Computer Systems - 2013-2014

1

SR Latch

" Truth table:

u=unused

—_——_ O O | W
_- = o | R

= Usage: 1-bit memory
— Keep the value in memory by maintaining S=0 and R=0

— Set the value in memory to 0 (or 1) by setting R=1 (or S=1)
for a short time

Q:l Q=O
R R

Inf2C Computer Systems - 2013-2014

12

Timing of events

= Asynchronous sequential logic

— State (and possibly output) of circuit changes whenever inputs
input 3|
output

= Synchronous sequential logic

change

— State (and possibly output) can only change at times synchronized
to an external signal — the clock

input J:_l

|
|
|
output {hf '|
clock

Inf2C Computer Systems - 2013-2014 13

D tlip-tlop

input — p . output D | : |

Q p : : :

clock —) Q . . .
clock

= Hdge-triggered flip-flop: on a +ve clock edge, D is copied to Q
= (Can be used to build registers:

D, N Q, —1 D, Q[—
D, > D, Q
D> [Q 4-bit register D, Q
D,
N — Q, — 1 Dy /\QO —
D, .
clock D Q, clock

Inf2C Computer Systems - 2013-2014

General sequential logic circuit

input : ' : ~ output
1 combinational g
: logic :
Current > ' Next
state state
signals ‘ QR D[signals
» QO DO <
2\
clock

" Operation:
— At every rising clock edge next state signals are propagated to

current state signals

— Current state signals plus inputs work through combinational
logic and generate output and next state signals

Inf2C Computer Systems - 2013-2014

15

Hardware FSM

" A sequential circuit is a (deterministic) Finite State
Machine — FSM

= Example: Vending machine
— Accepts 10p, 20p coins, sells one product costing 30p, no
change given

— Coin reader has 2 outputs: a,b for 10p, 20p coins respectively
00 00

— Output z asserted when 30p

or more has been paid in
Op

01

20p
z=0 10 z=1

00
Inf2C Computer Systems - 2013-2014

01

16

FSM implementation

" Methodology:

— Choose encoding for states, e.g SO=00, ..., S3=11

— Build truth table for the next state s, s,' and output z

— Generate logic equations for s, s, z

— Design comb logic from logic equations and add state-

holding register

comb. ——

logic

' '
0

»

o o olo o ol
== OO D,

(el
_ o Ok o ol

C = O R QO

HH@OH@_@
O = =D O

Inf2C Computer Systems - 2013-2014

17

