
Inf2C Computer Systems - 2013-2014 1

Lecture 7: Logic design

§  Binary digital logic circuits:
–  Two voltage levels (ground and supply voltage) for 0 and 1
–  Built from transistors used as on/off switches
–  Analog circuits not very suitable for generic computing
–  Digital logic with more than two states is not practical
Combinational logic: output depends only on the current inputs

(no memory of past inputs)

combinational
logic

. . .
. . . input output

Sequential logic: output depends on the current inputs as well as
(some) previous inputs

Inf2C Computer Systems - 2013-2014 2

Combinational logic circuits

§  Inverter (or NOT gate): 1 input and 1 output
“invert the input signal”

§  AND gate: minimum 2 inputs and 1 output
“output 1 only if both inputs are 1”

input output
IN OUT

OUT = IN

IN1

IN2
OUT

IN1 IN2 OUT

OUT = IN1 . IN2

0
1

1
0

0
0
1
1

0
1
0
1

0
0
0
1

Inf2C Computer Systems - 2013-2014 3

Combinational logic circuits

§  OR gate:
–  “output 1 if at least one input is 1”

§  NAND gate:
–  “output 1 if both inputs are not 1” (NOT AND)

IN1

IN2
OUT

IN1 IN2 OUT

OUT = IN1 + IN2
0
0
1
1

0
1
0
1

0
1
1
1

IN1

IN2
OUT

IN1 IN2 OUT

OUT = IN1 . IN2
0
0
1
1

0
1
0
1

1
1
1
0

Inf2C Computer Systems - 2013-2014 4

Combinational logic circuits

§  NOR gate:
“output 1 if no input is 1” (NOT OR)

§  Multiple-input gates:

IN1

IN2

IN1 IN2 OUT

OUT = IN1 + IN2
0
0
1
1

0
1
0
1

1
0
0
0

OUT

IN1

INn

OUT
.
.
.

OUT = 1 if all INi=1

IN1

INn

OUT
.
.
.

OUT = 1 if any INi=1

AND OR

Inf2C Computer Systems - 2013-2014 5

Multiplexer

§  Multiplexer: a circuit for selecting one of many inputs

z =
i0
i1

z

c

i0, if c=0
i1, if c=1

 c i0 i1 z

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
1
0
1

0
0
0
0
1
1
1
1

z = c.i0.i1 + c.i0.i1 + c.i0.i1 + c.i0.i1

= c.i0.(i1 + i1) + c.(i0 + i0).i1
= c.i0 + c.i1

“sum of products form”

Inf2C Computer Systems - 2013-2014 6

A multiplexer implementation
§  Sum of products form:

–  Can be implemented with 1 inverter, 2 AND gates and 1 OR
gate:

i1.c + i0.c

i0

z

c

i1

§  Sum of products is not practical for circuits with large
number of inputs (n)
–  The number of possible products can be proportional to 2n

Inf2C Computer Systems - 2013-2014 7

Arithmetic circuits

§  32-bit adder

§  Full adder:

a0

. . .

. . .

. . .
b0

a31

b31

s32

s0 64 inputs → too complex for sum of
products

a

b

sum

carry(-out)

c (carry-in)

 a b c carry sum

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
1
1

0
0
0
0
1
1
1
1

0
1
1
0
1
0
0
1

sum = a.b.c + a.b.c + a.b.c + a.b.c

carry = b.c + a.c + a.b

Inf2C Computer Systems - 2013-2014 8

Ripple carry adder

§  32-bit adder: chain of 32 full adders

– Carry bits ci are computed in sequence c1, c2, … , c32
(where c32 = s32), as ci depends on ci-1

–  Since sum bits si also depend on ci, they too are
computed in sequence

. . .

c0 b0 a0

s0

c1 b1 a1

s1

c31 b31 a31

s31 s32

1 bit
full-adder

Inf2C Computer Systems - 2013-2014 9

Propagation Delays

§  Propagation delay = time delay between input signal
change and output signal change at the other end

§  Delay depends on technology (transistor, wire
capacitance, etc.) and number of gates driven by the
gate’s output (fan out)

§  e.g.: Sum of products circuits: 3 gate delays
(inverter, AND, OR) → very fast!

§  e.g.: 32-bit ripple carry adder: 65 gate delays
(1 AND + 1 OR for each of 31 carries to propagate; 1
inverter + 1 AND + 1 OR for S31) → slow

Inf2C Computer Systems - 2013-2014 10

Sequential logic circuits

§  Output depends on current inputs as well as past
inputs
– The circuit has memory

§  Sequences of inputs generate sequences of
outputs ⇒ sequential logic

combinational
logic

. . .

. . .

. . .

. . .

. . .

input output

feedback
sequential
logic

Inf2C Computer Systems - 2013-2014 11

Sequential logic circuits

§  For a fixed input and n feedback signals, the circuit can
have up to 2n stable states
–  E.g. n=1 → one state if feedback signal = 0
 one state if feedback signal = 1

§  Example: SR latch
–  Inputs: R, S
–  Feedback: q, q

–  Output: Q

S

R

Q

Q

q

q

Inf2C Computer Systems - 2013-2014 12

SR Latch

S

R

Q

Q

q

q

0

1
0

1
1

0

0

1

1

1

0

0

0

0

q

q

§  Truth table:

§  Usage: 1-bit memory
–  Keep the value in memory by maintaining S=0 and R=0
–  Set the value in memory to 0 (or 1) by setting R=1 (or S=1)

for a short time

S R Qi

u=unused

0
0
1
1

0
1
0
1

Qi-1
0
1
u

S

R

Q=1
S

R

Q=0

Inf2C Computer Systems - 2013-2014 13

Timing of events

§  Asynchronous sequential logic
–  State (and possibly output) of circuit changes whenever inputs

change

§  Synchronous sequential logic
–  State (and possibly output) can only change at times synchronized

to an external signal → the clock

input

output

input

output

clock

Inf2C Computer Systems - 2013-2014 14

D flip-flop

§  Edge-triggered flip-flop: on a +ve clock edge, D is copied to Q
§  Can be used to build registers:

D

Q

clock

D Q

input

clock

output

D3
Q3

D2
Q2

D1
Q1

D0
Q0 clock

D3

D2

D1

D0

Q3

Q2

Q1

Q0

clock

4-bit register

Inf2C Computer Systems - 2013-2014 15

General sequential logic circuit

§  Operation:
–  At every rising clock edge next state signals are propagated to

current state signals
–  Current state signals plus inputs work through combinational

logic and generate output and next state signals

combinational
logic

. . .

. . .

. . .

. . .

input output

Next
state

signals
Q0

Dm

D0

Qm

Current
state

signals

clock

. . .
. . .

Inf2C Computer Systems - 2013-2014 16

Hardware FSM

§  A sequential circuit is a (deterministic) Finite State
Machine – FSM

§  Example: Vending machine
–  Accepts 10p, 20p coins, sells one product costing 30p, no

change given
–  Coin reader has 2 outputs: a,b for 10p, 20p coins respectively
–  Output z asserted when 30p

 or more has been paid in 10p

30p + 20p

0p

z=0

z=1 z=0

z=0

Inf2C Computer Systems - 2013-2014 17

FSM implementation

§  Methodology:
–  Choose encoding for states, e.g S0=00, …, S3=11
–  Build truth table for the next state s1', s0' and output z
–  Generate logic equations for s1', s0', z
–  Design comb logic from logic equations and add state-

holding register
 s1 s0 a b s1' s0' z

0
0
1
0
0
1

0
1
0
0
1
0

0
1
0
0
1
1

0
0
0
1
1
1

0
0
1
1
1
0

comb.
logic

a z

S1

S0'
S1'

S0

clk

b

0
0
0
0
0
0

0

0

